

Data Structure & Algorithm

Using C

 Debottam Das

LIST OF CONTENTS

CH 1 Introduction 1.1 – 1.7

• Data Types 1.1

• Classification of data types: 1) Primitive data type 1.1

• Classification of data types: 2) Non-primitive data type 1.2

• Classification of non-primitive data types: 1. User defined data type 1.2

• Classification of non-primitive data types: 2. Abstract data type 1.2

• What is Data Structure ? 1.3

• Advantages of data structure 1.3

• Different types of data structure: 1. Linear data structure 1.3

• 1. Linear data structure: a) Array 1.4

• 1. Linear data structure: b) Linked List 1.4

• 1. Linear data structure: c) Stack 1.5

• 1. Linear data structure: d) Queue 1.5

• Different types of data structure: 2. Non-linear data structure 1.6

• 2. Non-linear data structure: a) Tree 1.6

• 2. Non-linear data structure: b) Graph 1.6

CH 2 Time and Space Complexity 2.1 – 2.18

• Space complexity 2.1

• Time Complexity 2.1

• Calculation of f(n) 2.2

• Asymptotic complexity 2.2

• Big O notation 2.3

• Calculation of Big O notation 2.3

• Examples on Big O calculation 2.3 – 2.7

• Big O for linear loop 2.7

• Big O for quadratic loop 2.7

• Big O for consecutive statements 2.8

• Big O for if then else statements 2.9

• Big O for logarithmic loop 2.9

• Big O for linear logarithmic loop 2.10

• Big O for dependent quadratic loop 2.10

• Different problems on Big O notation 2.11 – 2.18

LIST OF CONTENTS

CH 3 Array 3.1 – 3.18

• Declaration of an array 3.1

• Understanding the definition of array 3.2

• 1) One dimensional array or 1D array 3.3

• Declaration of 1D array 3.3

• Accessing the elements of 1D array 3.3

• Initialization of 1D array 3.3

• Designated Initialization of 1D array 3.5

• Advantages of designated initialization 3.6

• Memory representation of 1D array 3.7

• 2) Two dimensional array or 2D array 3.8

• Declaration of 2D array 3.8

• Accessing the elements of 2D array 3.8

• Initialization of 2D array 3.9

• Memory representation of 2D array 3.10

• Row major ordering 3.10

• Column major ordering 3.12

• Limitations of array 3.13

• 1. Insertion of an element into a 1D array 3.13

• 2. Deletion of an element from a 1D array 3.14

•
C program to perform insertion and deletion of an element at a
specific position of a 1D array

3.16

CH 4 Stack 4.1 – 4.37

• Initialization of stack using array 4.1

• Operations on stack: 1) Primary operations 4.2

• 1. Push 4.2

• 2. Pop 4.4

• Operations on stack: 2) Secondary operations 4.5

• 1. isFull 4.5

• 2. isEmpty 4.6

• 3. Peek 4.6

• Evaluation of arithmetic expressions 4.7

• 1) Infix notation 4.7

LIST OF CONTENTS

CH 4 Stack 4.1 – 4.37

• 2) Postfix notation 4.8

• Validity of an infix expression 4.9

• Conversion of infix expression to postfix expression 4.14

• Infix to postfix conversion manually 4.14

• Infix to postfix conversion using stack 4.16

• Evaluation of postfix expression using stack 4.24

• 3) Prefix notation 4.34

• Infix to prefic conversion manually 4.34

• Infix to prefix conversion using stack 4.34

• Evaluation of a prefix expression 4.37

CH 5 Queue 5.1 – 5.44

• 1) Simple Queue or Queue 5.1

• Initialization of queue using array 5.1

• Operation on queue: 1. Insert 5.2

• Operation on queue: 2. Delete 5.4

• Operation on queue: 3. isFull 5.6

• Operation on queue: 4. isEmpty 5.7

• Operation on queue: 5. Peek 5.7

• Operation on queue: 6. Display 5.8

• Drawback of queue 5.12

• 2) Circular Queue 5.15

• isFull and isEmpty status of a circular queue 5.15

• Operation on circular queue: 1. Insert 5.23

• Operation on circular queue: 2. Delete 5.24

• Operation on circular queue: 3. Peek 5.25

• Operation on circular queue: 4. Display 5.26

• 3) Double ended queue or Deque 5.31

• Operation on Deque: 1. Insert front 5.31

• Operation on Deque: 2. Insert rear 5.33

• Operation on Deque: 3. Delete front 5.34

• Operation on Deque: 4. Delete rear 5.35

• Operation on Deque: 5. isFull and isEmpty 5.37

LIST OF CONTENTS

CH 5 Queue 5.1 – 5.44

• Operation on Deque: 6. Peek 5.38

• Operation on Deque: 7. Display 5.38

•
Types of Deque: 1. Input restricted deque and
 2. Output restricted deque

5.44

CH 6 Linked List 6.1 – 6.160

• Difference between array and linked list 6.2

• 1) Singly linked list 6.3

• Declaring a singly linked list 6.3

• 1. Creating a singly linked list 6.3

• 2. Displaying the data of all nodes in a singly linked list 6.7

• 3. Counting the number of nodes in a singly linked list 6.8

• 4. Insert a node at the beginning of a singly linked list 6.9

• 5. Insert a node at the end of a singly linked list 6.11

• 6. Insert a node before a specific node in a singly linked list 6.13

• 7. Insert a node after a specific node in a singly linked list 6.18

• 8. Insert a node at a specific position of a singly lin 6.20

• 9. Delete a node at the beginning of a singly linked list 6.25

• 10. Delete a node at the end of a singly linked list 6.26

• 11. Delete a node before a specific node in a singly linked list 6.28

• 12. Delete a node after a specific node in a singly linked list 6.31

• 13. Delete a specific node of a singly linked list 6.34

• 14. Delete a node at a specific position of a singly linked list 6.36

• C program to implement different operations on singly linked list 6.40

• 2) Doubly linked list 6.51

• Declaring a doubly linked list 6.52

• 1. Creating a doubly linked list 6.52

• 2. Displaying the data of all nodes in a doubly linked list 6.54

• 3. Counting the number of nodes in a doubly linked list 6.55

• 4. Insert a node at the beginning of a doubly linked list 6.56

• 5. Insert a node at the end of a doubly linked list 6.57

• 6. Insert a node before a specific node in a doubly linked list 6.59

• 7. Insert a node after a specific node in a doubly linked list 6.61

LIST OF CONTENTS

CH 6 Linked List 6.1 – 6.160

• 8. Insert a node at a specific position of a doubly linked list 6.62

• 9. Delete a node at the beginning of a doubly linked list 6.65

• 10. Delete a node at the end of a doubly linked list 6.66

• 11. Delete a node before a specific node in a doubly linked list 6.68

• 12. Delete a node after a specific node in a doubly linked list 6.70

• 13. Delete a specific node of a doubly linked list 6.72

• 14. Delete a node at a specific position of a doubly linked list 6.74

• C program to implement different operations on doubly linked list 6.77

• 3) Circular singly linked list 6.89

•
Comparative study between singly linked list and circular singly
linked list

6.89

• Declaring a circular singly linked list 6.90

• 1. Creating a circular singly linked list 6.90

• 2. Displaying the data of all nodes in a circular singly linked list 6.94

• 3. Counting the number of nodes in a circular singly linked list 6.95

• 4. Insert a node at the beginning of a circular singly linked list 6.97

• 5. Insert a node at the end of a circular singly linked list 6.98

• 6. Insert a node before a specific node in a circular singly linked list 6.99

• 7. Insert a node after a specific node in a circular singly linked list 6.102

• 8. Insert a node at a specific position of a circular singly linked list 6.104

• 9. Delete a node at the beginning of a circular singly linked list 6.108

• 10. Delete a node at the end of a circular singly linked list 6.109

• 11. Delete a node before a specific node in a circular singly linked list 6.110

• 12. Delete a node after a specific node in a circular singly linked list 6.113

• 13. Delete a specific node of a circular singly linked list 6.116

• 14. Delete a node at a specific position of a circular singly linked list 6.119

• C program for different operations on circular singly linked list 6.123

• 4) Circular doubly linked list 6.136

•
Comparative study between doubly linked list and circular doubly
linked list

6.136

• Declaring a circular doubly linked list 6.137

•
C program to implement different operations on circular doubly
linked list

6.138

LIST OF CONTENTS

CH 6 Linked List 6.1 – 6.160

• Application of linked list: Polynomial Arithmetic 6.151

• Algorithm to create a singly linked list for polynomial representation 6.152

• Addition of Polynomials 6.154

• Algorithm of polynomial addition 6.155

•
C program to add two polynomials represented by two singly linked
lists

6.157

CH 7 Searching and Sorting 7.1 – 7.64

• Introduction to linear search 7.1

• Algorithm of linear search 7.2

• C program of linear search 7.2

• Time complexity of linear search 7.3

• Advantages and disadvantages of linear search 7.4

• Introduction to binary search 7.4

• Algorithm of binary search 7.6

• C program of binary search without using recursion 7.7

• C program of binary search by using recursion 7.8

• Time complexity of binary search 7.9

• Advantages and disadvantages of binary search 7.10

• Comparative study between linear search and binary search 7.10

• Introduction to sorting 7.11

• Internal sorting 7.11

• External sorting 7.11

• Comparative study between internal sorting and external sorting 7.12

• In-place sorting 7.12

• Non-in-place sorting 7.12

• Stable sort 7.12

• Unstable sort 7.13

• Importance of the stability of a sorting algorithm 7.13

• Sorting on multiple keys 7.14

• Bubble sort 7.15

• Algorithm of bubble sort 7.19

• C program of bubble sort 7.20

LIST OF CONTENTS

CH 7 Searching and Sorting 7.1 – 7.64

• Time complexity of bubble sort 7.21

• Is bubble sort in-place sorting 7.21

• Stability of bubble sort 7.21

• Advantages of bubble sort 7.21

• Disadvantages of bubble sort 7.22

• Selection sort 7.22

• Algorithm of selection sort 7.26

• C program of selection sort 7.27

• Time complexity of selection sort 7.28

• Is selection sort in-place sorting 7.29

• Stability of selection sort 7.29

• Advantages of selection sort 7.30

• Disadvantages of selection sort 7.30

• Insertion sort 7.30

• Algorithm of insertion sort 7.34

• C program of insertion sort 7.35

• Time complexity of insertion sort 7.36

• Is insertion sort in-place sorting 7.36

• Stability of insertion sort 7.36

• Advantages of insertion sort 7.36

• Disadvantages of insertion sort 7.37

• Quick sort 7.37

• Algorithm of quick sort 7.46

• C program of quick sort 7.47

• Time complexity of quick sort 7.48

• Is quick sort in-place sorting 7.53

• Stability of quick sort 7.53

• Advantages of quick sort 7.54

• Disadvantages of quick sort 7.54

• Merge sort 7.54

• Algorithm of merge sort 7.59

• C program of merge sort 7.60

• Time complexity of merge sort 7.62

LIST OF CONTENTS

CH 7 Searching and Sorting 7.1 – 7.64

• Is merge sort in-place sorting 7.64

• Stability of merge sort 7.64

• Advantages of merge sort 7.64

• Disadvantages of merge sort 7.64

SYLLABUS

Module 1

Introduction: Basic Terminologies: Elementary Data Organizations, Data
Structure Operations: insertion, deletion, traversal etc.; Analysis of an Algorithm,
Asymptotic Notations, Time-Space trade off.

Searching: Linear Search and Binary Search Techniques and their complexity
analysis.

Module 2

Stacks: ADT Stack and its operations: Algorithms and their complexity
analysis, Applications of Stacks: Expression Conversion and evaluation -
corresponding algorithms and complexity analysis.

Queues: ADT queue, Types of Queue: Simple Queue, Circular Queue,
Priority Queue; Operations on each types of Queues: Algorithms and their
analysis.

Module 3

Linked Lists: Singly linked lists: Representation in memory, Algorithms
of several operations: Traversing, Searching, Insertion into, Deletion from
linked list; Linked representation of Stack and Queue, Header nodes,
Doubly linked list: operations on it and algorithmic analysis; Circular
Linked Lists: all operations their algorithms and the complexity analysis.

Trees: Basic Tree Terminologies, Different types of Trees: Binary Tree,
Threaded Binary Tree, Binary Search Tree, AVL Tree; Tree operations on
each of the trees and their algorithms with complexity analysis.
Applications of Binary Trees. B Tree, B+ Tree: definitions, algorithms and
analysis.

Module 4

Sorting and Hashing: Objective and properties of different sorting
algorithms: Selection Sort, Bubble Sort, Insertion Sort, Quick Sort, Merge
Sort, Heap Sort; Performance and Comparison among all the methods,
Hashing.

Graph: Basic Terminologies and Representations, Graph search and
traversal algorithms and complexity analysis.

Chapter 1

Introduction

 CH: 1 – Introduction 1.1

What is data ?

The quantities, characters or symbols on which operations are performed by a computer,
which may be stored in the form of electrical signals and recorded on a magnetic, optical or
mechanical recording media are called data.

Example: c = a + b. Here a and b both are data.

What is information ?

If data is arranged in a systematic way, then it gets structured and become meaningful. This
meaningful processed data is called information.

Data: nuraB si eman yM.

Information: My name is Barun.

1.1 Data Types: Data type defines the type of data which a variable store in the memory.
For example an integer variable ‘a’ is declared by the following statement.

int a;

The above statement implies that the variable ‘a’ can store integer value in the memory.

Two important points about data types:
1. It defines the certain domain of values.
2. It defines the operations allowed on those values.

In case of int type of variable it takes only integer values which satisfies the first criterion.
More over it allows to perform the mathematical operations like addition, subtraction,
multiplication, division, mod, bit-wise operation etc.
In case of float type of variable it takes only floating point values and allows the
mathematical operations like addition, subtraction, multiplication, division etc. But it does
not support bit-wise operations and mod (%) operations.

Classification of data types: There are two types of data types – 1) Primitive data type and
2) Non-primitive data type.

1) Primitive data type – Primitive data types or basic data types are the fundamental data
types which are supported by a programming language. In case of C language the
primitive data types are integer (declared by the keyword “int”), real (declared by the
keyword “float”), character (declared by the keyword “char”), Boolean (declared by the
keyword “bool”) etc. In c the Boolean data type is used by importing the header file with
“#include <stdbool.h>”.

 CH: 1 – Introduction 1.2

2) Non-primitive data type – Non-primitive data types are those data types which are
created using primitive data types. Non-primitive data types are classified into two
categories – a) User defined data type and b) abstract data type.

1. User defined data type – The operations and values of user defined data types are not
specified in the language, but it is specified by the user.
Example – structure, union and enumeration.
By using structure we define our own data type by combining other primitive data
types.
In the following example we are creating our own data type i.e. Cartesian point with the
help of other two integer types.

struct point
{

int x;
int y;

 };

2. Abstract data type (ADT) – ADTs are user defined data types which defines
operations on values by using user defined functions without specifying the inner
details of the functions and how the operations are performed. Basically ADT focuses
on “What to do?” hiding “How to do?” from the user. The word ‘Abstract’ in the
context of ADT means considered apart from the detailed specifications or
implementations. Therefore in case of ADT, the end-user is not concerned about the
details of how the methods are implemented using the functions, they are only aware of
how to use the method and get the result of that method.

For example, stack and queue are the perfect example of ADT. In case of stack the user
only knows the type of data that can be handled by the stack and the operations that can
be performed using the stack. The following operations can be performed by the stack.

• Push() – insert an element into the stack
• Pop() – delete an element from the stack
• isFull() – check whether the stack is full or not
• isEmpty() – check whether the stack is empty or not

In the above four operations the implementation details of the functions are hidden to
the users, only the use of the functions are known to the user.

There are multiple ways to implement an ADT. For example – an stack ADT can be
implemented either using arrays or linked lists.

Advantages: The program that uses the data structure is called client program. It has
access to the ADTs i.e. interface. The program which implements the data structure is
called the implementation program. Normally ADTs are used to separate the use of the
data structure from the details of its implementation. In case of stack if someone wants
to use it, he only needs to know the use of Push and Pop operations in the client
program without knowing its implementation. Moreover if any modification of the data

 CH: 1 – Introduction 1.3

structure is required, it is done in the implementation part only. There is no change in
the ADT of the client program. For example – if the stack is implemented by using
linked list instead of arrays, there will be modification or alteration in the functions of
Push and Pop operations only. This reduces the complication of the use the data
structure.

What is data structure ?

Data structure is the organization, management and storage of data in such a way that it can
be accessed and modified efficiently. Here efficiency will be considered both in terms of time
and space. That means in data structure the efficiency can be assessed by considering time
efficiency as well as space efficiency. In other words, the data structure is used to implement
an ADT. ADT tells us what is to be done and data structure tells us how to do it.

For example – array is a data structure. Suppose we are interested to store 100 integers. To
store 100 integers we need 100 variables of integer data type. But it is not the efficient way to
store 100 integers in this way, rather it is better to use an array of integer data type of size 100
to store all the values sequentially in memory. This will give us the better solution to handle
100 integers efficiently. Due to this reason the array is surely a data structure.

Now the question comes “which data structure should be used for a particular ADT ?”. In
reality, the different implementations of ADT are compared for time and space efficency. The
one best suited according to the current requirement of the user will be selected. For example
– stack ADT may be implemented using arrays or linked list. If array data structure provides
better space efficiency and the user requires space efficiency, then stack ADTs are
implemented by using arrays. On the contrary if time efficiency is preferred, the stack ADTs
are implemented by using linked list.

Advantages of data structure:
1. Efficiency: Proper choice of the data structures makes the program efficient in terms of

space and time.

2. Re-usability: One implementation can be used by multiple client program.

3. Abstraction: Data struc ture is specified by an ADT which provides a level of abstraction.
The client programs does not have to worry about the implementation details.

Different types of data structure: There are two types of data structure. 1) Linear data
structure and 2) Non-linear data structure.

1. Linear data structure – In a linear data structure, the elements are arranged in sequence
i.e. one after other. That means every element of a linear data structure has one
predecessor and one successor except the first and last element. In case of first element
there is one successor, but no predecessor. In case of last element there is one predecessor,
but no successor. Arrays, stacks, queues and linked lists are the examples of linear data
structure.

 CH: 1 – Introduction 1.4

a) Array – An array is a static data structure where the elements of same data type are stored
in consecutive memory locations and each elements are accessed by an index. In C, arrays
are declared using the following syntax.

data_type ArrayName[size];
For example: int marks[5];

The above statement declares an array named marks that contains 5 elements which are
stored in 5 consecutive memory locations as shown in Fig.1.1.

Fig.1.1: An array with five elements

In Fig.1.1 it is being observed that every element of the array has its predecessor and
successor except 1st element and 5th element. That’s why array is a linear data structure.

Limitation of Array:
1) Arrays are declared as fixed size. If it is required to handle more number of elements than

the size of the array, it is not possible to do that. Due to this reason array is referred as
static data structure.

2) Data elements of an array are stored in continuous memory locations which may not be
available always.

3) Insertion and deletion of element in case of array becomes problematic because of shifting
of elements from their positions.

b) Linked List – A linked list is a very flexible, dynamic data structure in which elements
(called nodes) are connected to each other in a sequential manner. In this case each node of
a linked list has two parts, one part contains the data and other part contains the address of
the next node. Therefore the part of the node which contains the address of the next node,
becomes the pointer of the next node. A pictorial view of a linked list is shown in Fig.1.2.

F ig.1.2: A linked list with four nodes whereas Node1 is pointed by a head pointer

In the above figure it is being seen that every node has its predecessor node and successor
node except node1 and node4. Therefore linked list is a linear data structure. In case of a
linked list the first node is pointed by a head pointer and the last node of the list contains
NULL pointer to indicate that it is the end of the linked list.

Data1 Link1Data1 Link1 Data1 Link1Data2 Link2 Data1 Link1Data3 Link3 Data1 Link1Data4 NULL
head

Node1 Node2 Node3 Node4

20 30 40 50 60

0 1 2 3 4Index

 CH: 1 – Introduction 1.5

Advantages of linked list:
1) All the nodes of a linked list are created dynamically during the execution of the program.

This feature of the linked list gives the facility to the user to add as many nodes as he
wants as per his requirement. Basically there is no limitation of nodes to be added in a
linked list like array.

2) Insertion and deletion of a node from a linked list is easier than array data structure. Here
shifting of the elements is not required like array which reduces the execution time of a
program.

c) Stack – A stack is linear data structure in which insertion and deletion of elements are
done at only one end which is known as top of the stack.Stack is called a last-in, first-out
(LIFO) data structure because the last element which is added to the stack is the first
element which is deleted from the stack. A pictorial view of a stack is shown in Fig.1.3.

Fig.1.3: A stack with four elements

A stack can be implemented either by using arrays or by using linked lists. The details of
the implementation will be discussed later. A stack supports three basic operations: push,
pop and peep.

1) The push operation adds an element to the top of the stack. However, before inserting an
element in the stack, we must check for overflow conditions. An overflow occurs when we
try to insert an element into a stack that is already full.

2) The pop operation removes the element from the top of the stack. Before deleting an
element from the stack, we must check for underflow conditions. An underflow condition
occurs when we try to delete an element from a stack that is already empty.

3) The peep operation returns the value of the topmost element of the stack (without deleting
it).

d) Queue – A queue is a linear data structure where the element inserted first will be taken
out first. Due to this property of the queue it is called first-in, first-out (FIFO) data
structure. The elements in a queue are added at one end called rear and removed from the
other end called front. Like stack queue can also be implemented by arrays or linked lists.
The pictorial view of a queue is shown in Fig.1.4.

Fig.1.4: A queue with five elements

Element1

Element4
Element3
Element2

Top of the
stack

1st Element 2nd Element 3rd Element 4th Element 5th ElementFront Rear

 CH: 1 – Introduction 1.6

2. Non-linear data structure – Unlike linear data structure, the elements in a non-linear data
structure are not in any sequence. Instead they are arranged in a hierarchical manner where
one element will be connected to one or more elements. Trees and graphs are the examples
of non-linear data structure.

a) Tree – A tree is a data structure which consists of a collection of nodes arranged in a
hierarchical order. One of the nodes is designated as the root node, and the remaining
nodes can be partitioned into disjoint sets such that each set is a sub-tree of the root.

The simplest form of a tree is a binary tree. A binary tree consists of a root node and left
and right sub-trees, where both sub-trees are also binary trees. Each node contains a data
element, a left pointer which points to the left sub-tree, and a right pointer which points to
the right sub-tree. The root element is the topmost node which is pointed by a ‘root’
pointer. If root = NULL then the tree is empty.

Figure 1.5 shows a binary tree, where R is the root node and T1 and T2 are the left and
right sub-trees of R . If T1 is non-empty, then T1 is said to be the left successor of R .
Likewise, if T2 is non-empty, then it is called the right successor of R .

 Fig.1.5: A binary tree with 12 nodes whereas node 1 is the root and T1 and T2 are the left
 and right sub-trees of the root node

In the above binary tree data structure some nodes have one predecessor and two
successor which contradicts the arrangement of linear data structure. That’s why binary
tree is a non-linear data structure.

b) Graph – A graph is a non-linear data structure which is a collection of vertices (also called
nodes) and edges that connect these vertices. A graph is often viewed as a generalization
of the tree structure, where instead of a purely parent-to-child relationship between tree
nodes, any kind of complex relationships between the nodes can exist.

In a tree structure, nodes can have any number of children but only one parent, a graph on
the other hand relaxes all such kinds of restrictions. Figure 1.6 shows a graph with five
nodes.

Fig. 1.6: A graph with five vertices A, B, C, D and E

11A B

D E

C

1

2 3

4

8 9

7

11 12

5
6

10

R

T2T1

 CH: 1 – Introduction 1.7

A node in the graph may represent a city and the edges connecting the nodes can represent
roads. A graph can also be used to represent a computer network where the nodes are
workstations and the edges are the network connections. Graphs have so many
applications in computer science and mathematics that several algorithms have been
written to perform the standard graph operations, such as searching the graph and finding
the shortest path between the nodes of a graph.
Note that unlike trees, graphs do not have any root node. Rather, every node in the graph
can be connected with every another node in the graph. When two nodes are connected via
an edge, the two nodes are known as neighbours. For example, in Fig. 2.8, node A has two
neighbours: B and D.

Chapter 2

Time and Space Complexity

 CH: 2 – Time and Space Complexity 2.1

Analyzing an algorithm means determining its efficiency i.e. determining the amount of
resources (time and space) needed to execute it. Efficiency of an algorithm is measured in
terms of time and space. Efficiency of an algorithm in terms of time is determined by time
complexity. Similarly efficiency of an algorithm in terms of space is measured with the help
of space complexity.

➢ Space complexity – The space complexity of an algorithm is the amount of memory
space which is required during the program execution as a function of the input size.
Generally space required by a program depends on the way it has been implemented. That
means it depends on the type of data structure. If it is implemented by using instructions,
constants, variables and static data structures like arrays, structures, it constitutes fixed
space. If the program is implemented by using recursions and dynamic data structures like
linked lists, it consumes variable memory space depending upon the input size. But
minimum execution time of a program is more important now-a-days compared to the
memory space. Due to this reason, calculation of time complexity is more crucial for our
discussion.

➢ Time complexity – The time complexity of an algorithm is basically the running time of a
program as a function of the input size. The running time of a program is proportional to
the number of instructions it executes and the number of instructions which a program
executes depends on the program’s input size. Therefore the time complexity depends on
the input size of a program. If f(n) represents the number of instructions executed for the
input value n, then f(n) gives the time complexity of the program. Let’s consider the
following example to explain how to determine f(n).

for(i=0; i<n; i++)
printf(“Hello World\n”);

Let’s assume that the printf instruction takes 1 unit of time. In the above case the printf
instruction will be executed for n no. of times. This will take n units of time to be
executed. Therefore here f(n) = n.

We can compare two data structures for a particular operation by comparing their f(n)
values. Depending on the f(n) values, one data structure is selected for that particular
operation considering the time complexity. Suppose we have an array with 10 elements as
shown in Fig.2.1.

 The arrows indicate the shifting of every elements one position towards right

Fig.2.1: Insertion of an element 5 at the 1 st position of an array with 10 elements

The element 5 is to be inserted at the 1st position of the array. Here we need to shift right
the every elements. Therefore 10 no. of right shifts are required to accommodate the
element 5 at the 1st position. If one shift takes 1 unit of time, then 10 shifts will take 10
units of time.

10 20 30 40 50 60 70 80 90 100

5

0 1 2 3 4 5 6 7 8 9 10 11Index

 CH: 2 – Time and Space Complexity 2.2

Hence f(n) = 10 + 1 (unit of time required to insert the new element). On the other hand,
if we have a linked list with 10 nodes which consist of 10 elements, we do not require any
right shift operation to place an element at the beginning of the linked list. Therefore it
takes only 1 unit of time to place the new element at the beginning of the list which makes
f(n) = 1. So obviously we should choose the linked list data structure as it has lower value
of f(n) for the insertion operation.

An ideal data structure is one which takes the least possible time for all its operations and
consumes the least memory space. But practically designing such ideal data structure is
not an easy task. There can be more than one algorithm to solve a particular problem. One
may require less memory space to store the program and other may require less CPU time
to execute. Depending upon the criteria, where space is the main constraint, the program
which takes less memory space is chosen. On the contrary where minimum CPU time is
the main criterion, the program which takes less time to be executed is selected.

Calculation of f(n) – For determining the value of f(n) we are interested in growth rate of
f(n) with respect to n because it might be possible that for smaller input size, one data
structure may seem better than the other data structure, but for larger input size it may not.
This concept is applicable in comparison between two algorithms as well. To determine
the value of f(n) it is more important to find out which term in the expression of f(n) is
contributing much in the total running time of an algorithm. The value of f(n) is
approximated to the term which is dominant in the execution time of the algorithm. This
approximate measure of time complexity by determining the approximate value of f(n) is
called asymptotic complexity. Let’s take an example.

Suppose f(n) = 5n2 + 6n + 12

For n = 1,

% of running time due to 5n2 =
5

5+6+12
×100 = 21.74%

% of running time due to 6n =
6

5+6+12
×100 = 26.09%

% of running time due to 12 =
12

5+6+12
×100 = 52.17%

The percentage contributions of the terms 5n2, 6n and 12 in the total execution time are
given in Table.2.1 for different values of n.

Table.2.1

n 5n2 6n 12

1 21.74% 26.09% 52.17%

10 87.41% 10.49% 2.09%

100 98.79% 1.19% 0.02%

1000 99.88% 0.12% 0.0002%

 CH: 2 – Time and Space Complexity 2.3

It is being observed in Table.2.1 that with the larger value of n the term 5n2 is contributing
maximum in the running time and the effects of other two terms are negligible. Therefore
we can approximate the value of f(n) to 5n2 neglecting the other two terms 6n and 12. As
per the rules of asymptotic complexity f(n) = 5n2.

Big O Notation – Big O notation is used to measure the performance of any algorithm by
providing the order of growth of the function f(n) where f(n) gives the running time of the
algorithm. In other words, it gives the upper bound on a function by which it can be
ensured that the function will never grow faster than the upper bound. Asymptotic
complexity gives the measure of approximate running time to determine the time
complexity of a program. The Big O notation helps to achieve the approximate running
time.

If f(n) and g(n) are the two functions, then f(n) = O(g(n)), where 0 ≤ f(n) ≤ c g(n) for n ≥
n0, if and only if the constants c and n0 exist. If the condition f(n) ≤ c g(n) is satisfied for a
finite values of c and n0, then we can say that f(n) will not grow faster than c g(n) for any
value of n which is greater or equal to n0. As a result g(n) becomes the upper bound of f(n)
beyond n0. Therefore this concept gives us the worst case time complexity which says how
worst a particular algorithm can perform. The pictorial representation of Big O notation is
given in Fig.2.2 below.

F ig.2.2: Pictorial representation of Big O notation

Calculation of Big O notation – For the calculation of Big O it is required to find out the
expression of f(n) first for an algorithm. Now using the expression of f(n) and assuming
the expression of g(n) we have to determine the values of the constants c and n0 for which
the condition f(n) ≤ c g(n) is satisfied. Once this condition is proved, then g(n) will give
the Big O for that particular algorithm. To clarify this concept some examples are given
below.

 CH: 2 – Time and Space Complexity 2.4

Example1: If f(n) = n and g(n) = 2n, then check f(n) = O(g(n) or not.

We know, f(n) ≤ c g(n)

or, n ≤ c 2n

or, 1 ≤ 2c [·.· n ≠ 0]

or, c ≥ 0.5

.·. c = 1

Therefore f(n) ≤ c g(n) for n ≥ n0 = 1 and c = 1. According to the definition of Big O, we
can write f(n) = O(2n). Now we can ignore the coefficient 2 in the expression g(n) which
does not affect the relation f(n) ≤ c g(n). Hence f(n) = O(n) which implies that the growth
rate of f(n) is linear.

Example2: If f(n) = 4n + 3 and g(n) = n, then check f(n) = O(g(n) or not.

We know, f(n) ≤ c g(n)

or, 4n + 3 ≤ c n

Now to satisfy the above inequality c should be greater than 4. So, we have assumed c = 5.
Putting c = 5 we get,

4n + 3 ≤ 5n
 or, 3 ≤ 5n – 4n
.·. n ≥ 3

Therefore f(n) ≤ c g(n) for n ≥ n0 = 3 and c = 5. .·. f(n) = O(n) which implies that the
growth rate of f(n) is linear. If we compare the growth rates of f(n) and g(n) by plotting
f(n) and g(n) in Fig.2.3, it is being clearly observed that f(n) is always less than g(n)
beyond n = 3. Therefore g(n) becomes upper bound on f(n) for n ≥ 3.

Fig.2.3: Plotting the growth rate of two functions f(n) and g(n)

 CH: 2 – Time and Space Complexity 2.5

In the above figure it is being seen that f(n) will never grow faster than c g(n) for n ≥ 3.
Again it is also being noticed that f(n) is larger than c g(n) for n < 3. Therefore the value of
n0 is important. Therefore it is a very tedious job to determine the value of n0 without the
help of Big O notation. Big O notation gives the easier way to determine n0 which gives
the worst case time complexity beyond a certain limit of n.

Example3: If f(n) = 5n2 + 4 and g(n) = n2, then check f(n) = O(g(n) or not.

We know, f(n) ≤ c g(n)

or, 5n2 + 4 ≤ c n2

or, 5n2 + 4 ≤ 6n2 (Assuming c = 6)

or, 4 ≤ n2

.·. n ≥ 2

Therefore f(n) ≤ c g(n) for n ≥ n0 = 2 and c = 6. .·. f(n) = O(n2) which implies that the
growth rate of f(n) is quadratic.

Let’s consider the growth rates of some standard functions which are normally used for
Big O notation in the following table.

Table.2.2

g(n)

n 1 log2 n n n log2 n n2 n3 2n

1 1 0 1 0 1 1 2

2 1 1 2 2 4 8 4

4 1 2 4 8 16 64 16

8 1 3 8 24 64 512 256

16 1 4 16 64 256 4096 65536

32 1 5 32 160 1024 32768 429 x 107

In the above table it is clearly seen that g(n) = 1 provides best time complexity whereas
g(n) = 2n gives the worst time complexity. The above functions are some standard
functions used in Big O notation.

 CH: 2 – Time and Space Complexity 2.6

Example4: The following program calculates the sum of first n natural numbers.

int main()
{

int i, n, sum = 0;
scanf(“%d”, &n);
for(i=1; i<=n; i++)

sum = sum + i;
 printf(“%d”, sum);
 return 0;
}

Find the time complexity of the above program.

Program Statements Time required

int main()

{

 int i, n, sum = 0; ← 1 time

 scanf(“%d”, &n); ← 1 time

 for(i=1; i<=n; i++)

 sum = sum + i; ← n times

 printf(“%d”, sum); ← 1 time

 return 0; ← 1 time

}

.·. f(n) = n + 4

Let g(n) = n. Putting f(n) = n + 4 and g(n) = n we get,

f(n) ≤ c g(n)

or, n + 4 ≤ c n

or, n + 4 ≤ 2n (Assuming c = 2)

.·. n ≥ 4

Therefore f(n) ≤ c g(n) for n ≥ n0 = 4 and c = 2. .·. f(n) = O(n) which implies the linear
growth. But the above mentioned program’s time complexity may be improved by

modifying it. If we use the formula (sum =
n(n+1)

2
) to calculate the sum of first n

natural numbers in the program, the time complexity will be reduced significantly. The
modified program is given below.

 CH: 2 – Time and Space Complexity 2.7

Program Statements Time required

int main()

{

 int n, sum = 0; ← 1 time

 scanf(“%d”, &n); ← 1 time

 sum = (n*(n + 1)) / 2; ← 1 time

 printf(“%d”, sum); ← 1 time

 return 0; ← 1 time

}

.·. f(n) = 5

Let g(n) = 1. Putting f(n) = 5 and g(n) = 1 we get,

 f(n) ≤ c g(n)
or, 5 ≤ c . 1
.·. c ≥ 5

Therefore f(n) ≤ c g(n) for n ≥ n0 = 1 and c = 6. .·. f(n) = O(1) which implies the constant
growth. In this case the execution time does not depend of the input size n. So, this
algorithm becomes the fastest algorithm. Hence it is clear from the above program that the
time complexity of the program has been improved from O(n) to O(1).

➢ Big O for linear loop – Let’s consider a for loop as given below.

for(i=0; i<n; i++)
{

//Statement
}

In this case the statement will be executed for n times. If the statement takes 1 unit of time
to be executed, then the entire for loop will take n units of time. Therefore the time
complexity will be O(n).

➢ Big O for quadratic loop – Let’s consider the following nested for loops.

for(i=0; i<n; i++)
{

for(j=0; j<n; j++)
{

//Statement
}

}

 CH: 2 – Time and Space Complexity 2.8

In this case the inner for loop (with variable j) executes the statement for n times for a
single execution of the outer for loop (with variable i). As the outer for loop executes for n
time also, then the statement under the inner for loop will be executed for nxn i.e. n2 times.
Hence the time complexity will be O(n2).

➢ Big O for consecutive statements – Consider a part of program which consists of some
instructions, one for loop and another nested for loops.

Program statements Execution time

int x = 2;
int i;
x = x + 1;

3 units of time

for(i=0; i<n; i++)
{

//Statement
}

n units of time

for(i=0; i<n; i++)
{

for(j=0; j<n; j++)
{

//Statement
}

}

n2 units of time

Therefore the entire program will take a time f(n) = n2 + n + 3. Let g(n) = n2.

Now, f(n) ≤ c g(n)

 or, n2 + n + 3 ≤ c n2

 or, n2 + n + 3 ≤ 2n2 (Assuming c = 2)

 or, n2 – n – 3 ≥ 0

 or, (n – 2.3) (n + 1.3) ≥ 0

Now for n > 0 the factor (n + 1.3) > 0. Obviously (n – 2.3) > 0 i.e. n > 2.3.

Therefore f(n) ≤ c g(n) for n ≥ n0 = 3 and c = 2.
So, the time complexity will be f(n) = O(n2).

 CH: 2 – Time and Space Complexity 2.9

➢ Big O for if then else statements – Consider a part of program which consists of if-else
statements.

Program statements Execution time

scanf(“%d”, &n); 1 unit of time

if(n == 0)
{

//statement
}

If (n==0) condition satisfied then this
portion of codes will be executed. To
check the condition 1 unit of time will be
consumed and the statement under if
portion will consume another unit of time.
Therefore total time consumed for this if
portion is 2 units of time.

else
{

for(i=1; i<=n; i++)
//statement

}

If (n==0) condition is not satisfied, the
else part will be executed. To check the
condition 1 unit of time will be consumed
and n units of time will be consumed for
the execution of the for loop under else
part. Therefore total time consumed for
this else part is (n+1).

From the above discussion it is being observed that time consumed for the else part is larger
than the time consumed for the if part. Hence to determine the worst case time complexity we
have to calculate the total time taken by the program when it executes else part. Therefore in
worst case the total time consumed by the program is (1 + n + 1) i.e. (n + 2). Thus the worst
case time complexity of the program will be O(n).

➢ Big O for logarithmic loop – Consider the following piece of codes.

for(i=1; i<=n; i= i*2)
//statement

In this case i is not incremented by 1 for every iteration rather i is doubled every time.
That’s why the statement under the for loop will not be executed for n times here. How
many times the loop will be repeated can be evaluated as follows.

Iterations Value of i

Iter 1 Initially i = 1 = 20

Iter 2 i = 2 = 21

Iter 3 i = 4 = 22

Iter 4 i = 8 = 23

: :

Iter k i = 2k-1 = n .·. k = log2 n + 1

Therefore time complexity will be O(log2 n).

 CH: 2 – Time and Space Complexity 2.10

Consider the another case where i is halved for every iteration of the loop as shown below.

for(i=n; i>=1; i= i/2)
//statement

Iterations Value of i

Iter 1 Initially i = n = n/20

Iter 2 i = n/2 = n/21

Iter 3 i = n/4 = n/22

: :

Iter k i = n/2k-1 = 1 .·. k = log2 n + 1

Therefore time complexity will be O(log2 n).

➢ Big O for linear logarithmic loop – Consider the following part of program.

for(i=1; i<=n; i++)
for(j=1; j<=n; j = j*2)

//statement

In this case the inner loop executes for (log2 n + 1) times whereas the outer loop executes
for n times. Therefore the statement under the inner loop executes for n(log2 n + 1) times
which gives the time complexity as O(nlog2 n).

➢ Big O for dependent quadratic loop – Consider the following program.

for(i=1; i<=n; i++)
for(j=1; j<=i; j++)

//statement

In this case for i=1 of the outer loop the inner loop executes for 1 time, for i=2 the inner
loop executes for 2 times, for i=3 the inner loop executes for 3 times and so on as given in
the following table.

Outer loop’s iterations Inner loop’s iterations No. of executions of inner loop

For i =1 Executes from j = 1 to 1 Executes for 1 time

For i = 2 Executes from j = 1 to 2 Executes for 2 times

For i = 3 Executes from j = 1 to 3 Executes for 3 times

: : :

For i = n Executes from j = 1 to n Executes for n times

Therefore total no. of execution = 1 + 2 + 3 + 4 + ……………. + n =
n(n+1)

2
which

gives the time complexity O(n2).

 CH: 2 – Time and Space Complexity 2.11

Problem1: What is the time complexity of the following program and what will be the value
of count after the execution of the program ?

void fun(int n)
{

int i, j, k, count = 0;
for(i=n/2; i<=n; i++)

for(j=1; j+n/2<=n; j++)
for(k=1; k<=n; k=k*2)

count++;
}

Ans: The first statement “int i, j, k, count = 0;” takes 1 unit of time. Therefore time
complexity for this statement = O(1).

Now we can see there are three nested for loops with variables i, j and k. Under the inner-
most for loop we have a statement “count++”. We have to find out how many times the
statement “count++” will be executed to determine the time complexity of this three nested
loops.

Iterations Value of i

Iter 1 i = n/2 + 0

Iter 2 i = n/2 + 1

Iter 3 i = n/2 + 2

Iter 4 i = n/2 + 3

: :

Iter k i = n/2 + (k – 1) = n
.·. k = n/2 + 1

So this for loop with variable i will be executed for (n/2 + 1) times which provides the time
complexity of O(n).

Iterations Value of j

Iter 1 j = 1

Iter 2 j = 2

Iter 3 j = 3

Iter 4 j = 4

: :

Iter k j = k
.·. k + n/2 = n .·. k = n/2

As this for loop with variable j executes for n/2 times, the time complexity for this loop
becomes O(n).

 CH: 2 – Time and Space Complexity 2.12

Iterations Value of k

Iter 1 k = 1 = 20

Iter 2 k = 2 = 21

Iter 3 k = 4 = 22

Iter 4 k = 8 = 23

: :

Iter p k = 2k-1 = n
.·. k = log2 n + 1

Therefore the time complexity for this inner-most loop is O(log2 n).

Now the total time complexity of these three nested loops will be the product of each Big O
i.e. O(n2log2 n).

Again if the statement “count++” will be executed for x times, then we can write,

x = (n/2 + 1) . n/2 . (log2 n + 1) =
1
4

n(n+2)(log2n+1)

After 1 time execution the value of count will be 1. Therefore after the execution of the

program count =
1
4

n(n+2)(log2n+1) .

Problem2: What is the time complexity of the following program ?

void fun(int n)
{

int i, j;
if(n <= 1)

return;
for(i=1; i<=n; i++)

for(j=1; j<=n; j++)
{

printf(“Hello\n”);
break;

}
}

Ans: In the above program the first statement always runs for one time. At the second
statement if the condition (n <= 1) is satisfied, then program returns to its calling function.
Therefore if the condition is satisfied, the program takes 2 units of time. Thus the time
complexity of the program becomes O(1) if the condition is true.

 CH: 2 – Time and Space Complexity 2.13

When the condition is false then it will execute the rest part of the program which consists a
nested for loop – one inner loop with variable j and one outer loop with variable i. Now due
to the presence of break statement under the inner loop, the inner loop always executes for
one time. As a result for every value of i (during the execution of outer loop) from i=1 to n
the inner loop executes for one time always. Therefore the entire nested loop prints “Hello” n
no. of times. Hence the program executes for (n + 2) no. of instructions consuming (n + 2)
units of time if the condition fails. In this way it will provide the time complexity of O(n).

Now we should consider the worst time complexity which is the largest one among O(1) and
O(n). Ultimately the time complexity of the entire program becomes O(n).

Problem3: What is the time complexity of the following program ?

void fun(int n)
{

int i, j;
i = 1;
while(i < n)
{

j = n;
while(j >= 1)

j = j/2;
i = 2 * i;

}
}

Ans:

Iterations Value of i

Iter 1 i = 1 = 20

Iter 2 i = 2 = 21

Iter 3 i = 4 = 22

Iter 4 i = 8 = 23

: :

Iter k i = 2k-1 = n – 1
.·. k = log2 (n-1) + 1

Therefore the time complexity of the outer loop is O(log2 n).

 CH: 2 – Time and Space Complexity 2.14

Iterations Value of j

Iter 1 j = n = n/20

Iter 2 j = n/2 = n/21

Iter 3 j = n/4 = n/22

Iter 4 j = n/8 = n/23

: :

Iter k j = n/2k-1 = 1
.·. k = log2 n + 1

The time complexity of the inner loop is O(log2 n). The overall time complexity of the
program will become O(log2

2 n).

Problem4: What is the time complexity of the following program ?

void fun(int n)
{

int i, j;

for(i=1; i<=n/3; i++)
for(j=1; j<=n; j = j+4)

printf(“Hello\n”);
}

Ans:

Iterations Value of i

Iter 1 i = 1

Iter 2 i = 2

Iter 3 i = 3

Iter 4 i = 4

: :

Iter k i = k = n/3
.·. k = n/3

So the time complexity of the outer loop is O(n).

 CH: 2 – Time and Space Complexity 2.15

Iterations Value of j

Iter 1 j = 1 = 1 + 0x4

Iter 2 j = 5 = 1 + 1x4

Iter 3 j = 9 = 1 + 2x4

Iter 4 j = 13 = 1 + 3x4

: :

Iter k j = 1 + (k-1)x4 = n

.·. k =
n−1

4
+1 =

n+3
4

Here the time complexity of the inner loop will be O(n). As a result the overall time
complexity of the program will be O(n2).

Problem5: What is the time complexity of the following program ?

void fun(int n)
{

int i=1, s=1;
while(s <= n)
{

i++;
s = s + i;
printf(“*”);

}
}

Ans:

Iterations Value of s Value of i

Iter 1 s = 1 i = 2

Iter 2 s = 1 + 2 = 3 i = 3

Iter 3 s = 1 + 2 + 3 = 6 i = 4

Iter 4 s = 1 + 2 + 3 + 4 = 10 i = 5

:

Iter k s = 1 + 2 + 3 + 4 + + k = n

or, s =
k (k+1)

2
= n

or, k2 + k = 2n

.·. k2 + k – 2n = 0

i = k + 1

 CH: 2 – Time and Space Complexity 2.16

Solving the quadratic equation we get, k = −1±√1+8n
2

Now no. of iterations k is always positive.

.·. k = √8n+1−1
2

The time complexity will be O(√n).

Problem6: What is the time complexity of the following program ?

void Read(int n)
{

int k = 1;
while(k < n)

k = 3*k;
}

Ans:

Iterations Value of k

Iter 1 k = 1 = 30

Iter 2 k = 3 = 31

Iter 3 k = 9 = 32

Iter 4 k = 27 = 33

: :

Iter p k = 3p-1 = n – 1
or, p – 1 = log3 (n-1)
.·. p = log3 (n-1) + 1

The time complexity of the function will be O(log3 n)

Problem7: What is the time complexity of the following program ?

void function(int n)
{

int i,j;
for(i=1; i<=n; i++)

for(j=1; j<=n; j+=i)
printf(“*”);

}

 CH: 2 – Time and Space Complexity 2.17

Ans:

Iterations Value of i j loop execution No. of times j
loop executed

Iter 1 i = 1 Iteration Value of j

Iter 1 j = 1

Iter 2 j = 2

Iter 3 j = 3

Iter p j = p = n

n

Iter 2 i = 2 Iteration Value of j

Iter 1 j = 1 + 0x2

Iter 2 j = 1 + 1x2

Iter 3 j = 1 + 2x2

Iter p j = 1 + 2(p-1) = n

.·. p =
n−1

2
+1

n−1
2

+1

Iter 3 i = 3 Iteration Value of j

Iter 1 j = 1 + 0x3

Iter 2 j = 1 + 1x3

Iter 3 j = 1 + 2x3

Iter p j = 1 + 3(p-1) = n

.·. p =
n−1

3
+1

n−1
3

+1

Iter 4 i = 4 Iteration Value of j

Iter 1 j = 1 + 0x4

Iter 2 j = 1 + 1x4

Iter 3 j = 1 + 2x4

Iter p j = 1 + 4(p-1) = n

.·. p =
n−1

4
+1

n−1
4

+1

:

 CH: 2 – Time and Space Complexity 2.18

Iterations Value of i j loop execution No. of times j
loop executed

Iter n i = n Iteration Value of j

Iter 1 j = 1 + 0xn

Iter 2 j = 1 + 1xn

Iter 3 j = 1 + 2xn

Iter p j = 1 + n(p-1) = n

.·. p =
n−1

n
+1

n−1
n

+1

Total no. of times

j loop executed = n +
n−1

2
+1 +

n−1
3

+1 +
n−1

4
+1 + …… +

n−1
n

+1

 = (n/1 + n/2 + n/3 + n/4 + …………. + n/n) - (1/2 + 1/3 + 1/4 + ……. + 1/n) +
 (1 + 1 + 1 + ……… upto n-1 no. of terms)

 = n(1/1 + 1/2 + 1/3 + 1/4 + ………… + 1/n) – (1/1 + 1/2 + 1/3 + ……. + 1/n)
 + 1/1 + (n - 1)

 = nlogn – logn + n

 = (n-1)logn + n

 ≈ nlogn + n

 ≈ n(logn +1)

 ≈ nlogn (approximately)

Therefore time complexity of the program will be O(nlogn).

Chapter 3

Array

 CH: 3 – Array 3.1

Suppose we have to store the marks of 100 students in an institution. If we want to do this job
using variables in C language, we need to declare 100 separate variables with different
names, which is a tedious and inefficient way. To get rid off this problem, C language offers a
data structure known as array. Using the array we can store plenty of values in a well
organized manner in the memory of the computer. Moreover any value stored inside an array
may be accessed and modified very easily. In a word it can be said that an array is a
collection of variables of same type. Therefore the concept of array plays a vital role in C
language. The definition of an array is given as follows.

An array is a static linear data structure where the elements of same data type are stored in
consecutive memory locations and each elements are accessed by an index.

Declaration of an array - In C, arrays are declared using the following syntax or more
precisely it can be said that one dimensional array is declared using the following syntax.

data_type ArrayName[size];

In the above declaration data_type denotes the type of the values that can be stored in the
array, ArrayName indicates the name of the array which is assigned by the programmer and
the size enclosed with square brackets denotes the fixed or static size of the array which can
not be changed throughout the program.

For example: int marks[100];

The above statement declares an array named marks that contains 100 elements which are
stored in 100 consecutive memory locations as shown in Fig.3.1. Here the elements of the
array contains the marks of different students.

 1D Array ‘marks’
marks[0]

75
marks[1]

86
marks[2]

91
…….. Marks[98]

85
Marks[99]

67

 index→ 0 1 2 …….. 98 99

Starting Address→ 1000 1004 1008 …….. 1392 1396

Fig.3.1: Array stores the marks of 100 students

In Fig.3.1 it is being observed that every element of the array has its predecessor and
successor except 1st element and 100th (last) element. That’s why array is a linear data
structure.

 CH: 3 – Array 3.2

Understanding the definition of array – Here the significance of the important terms in the
definition of an array will be explained in details.

I) Data structure: Data structure is a format of organizing and storing multiple data in an
efficient way so that every data can be accessed easily. Array also stores plenty of data in
some consecutive memory locations which gives the flexibility to read and modify those data
very easily with the help of the indices of that particular array. That’s why array is called data
structure.

II) Static data structure: Why array is called static data structure is illustrated here. If the
format of the declaration of an array is noticed, it will be seen that the size of the array
enclosed by square brackets is made constant at the very beginning of any program in C. This
size is basically the maximum size of the array. If an array is declared as “int a[50]”, it can
store maximum 50 integer values. Hence if we are going to store 51st value inside this array,
we can not store it. Moreover this size can not be altered anywhere after this declaration in C.
That’s why the array data structure is called static. This creates a serious problem where the
number of values to be stored in an array can not be known in advance. In this situation the
maximum size of the array is taken very large in the declaration to protect the array to be
exhausted. On the contrary due to the declaration of the array with large size plenty of array
space may not be utilized.

III) Linear data structure: In case of an array every element has one predecessor and one
successor element except the first and the last element of the array. In addition to this an
array is organized in a sequential manner. Therefore an array is a linear data structure.

IV) Elements of same data type: All the elements or the values inside an array must have
same data type either integer or floating point or character type. An array can not
accommodate different types of data. For example it is not possible to store integer values
and floating point values in the same array. Due to this reason the entire array is declared by a
data type initially, which gives the information regarding the type of values to be stored
inside the array.

V) Consecutive memory locations: The elements of an array are stored in successive memory
locations. If an array ‘a’ is declared as ‘int’ in a program, each element will take 4 bytes of
memory for 32-bit architecture and here 1st, 2nd, 3rd and so on elements will be stored with the
starting addresses 1000, 1004, 1008 and so on respectively provided the starting address or
the base address of the array is 1000. The memory organization of an array declared as ‘int’ is
shown below in Fig.3.2 for clarification.

 1D Array ‘a’ of int type a[0] a[1] a[2] a[3] a[4]

 index→ 0 1 2 3 4

Starting Address→ 1000 1004 1008 1012 1016

F ig.3.2: Memory representation of an integer type array with five elements

 CH: 3 – Array 3.3

1) One dimensional array or 1D array – 1D array is an array where the elements are
arranged sequentially in one direction. In this case only one row exists and all the elements
are positioned one after another row-wise. The elements of a 1D array are accessed by one
index only such as - 1st element of a 1D array is accessed by a[0], 2nd element by a[1], 3rd

element by a[2] and so on where 0, 1, 2 enclosed by square brackets are the indices. In the
above we have discussed one dimensional array mainly to demonstrate the definition of an
array. A 1D array is shown in Fig.3.3 along with its memory representation.

 1D Array ‘a’ of int type a[0] a[1] a[2] a[3] a[4]

 index→ 0 1 2 3 4

Starting Address→ 1000 1004 1008 1012 1016

Fig.3.3: 1D array of five elements along with index values and memory representation

Declaration of 1D array - A one dimensional array is declared as follows in C.

data_type ArrayName[size];

• data type—the kind of values it can store, for example, int , char , float , double .
• ArrayName—to identify the array.
• size—the maximum number of values that the array can hold.

Accessing the elements of 1D array – To access a particular element of a 1D array we have
to write the array name followed by the index of the element enclosed within a square bracket
like ArrayName[index]. In case of array in C language the index starts from 0 and ends to
(size – 1). That means, the index of first element will be 0 and the index of the last element
will be (size – 1).

If we want to access 1st element of an array named ‘a’, we should use a[0]. Similarly 2nd, 3rd,
4th, 5th element can be accessed by a[1], a[2], a[3], a[4] respectively.

Initialization of 1D array – There are four methods by which a 1D array can be initialized to
some values.

Method 1: In this method the 1D array is initialized using the following syntax either during
the declaration or after the declaration as given below.

int a[5] = {10, 20, 30, 40, 50}; [During array declaration]

OR

int a[5];
a[5] = {10, 20, 30, 40, 50}; [After array declaration]

In the above statement, the 1st element is initialized to 10, 2nd element is initialized with 20
and so on. Therefore we can say a[0] = 10, a[1] = 20, a[2] = 30, a[3] = 40 and a[4] = 50.

 CH: 3 – Array 3.4

Method 2: In this method the 1D array is initialized with some values during the declaration
as follows.

int a[] = {10, 20, 30, 40, 50}; [During array declaration]

Like Method 1 the 1st element is initialized to 10, 2nd element is initialized with 20 and so on
i.e. a[0] = 10, a[1] = 20, a[2] = 30, a[3] = 40 and a[4] = 50. But Method 2 is better than
Method 1, because in Method 2 the size of the 1D array is not specified into the square
brackets. Here the maximum size of the 1D array becomes equal to the number of elements
initialized in the array declaration. For example – the size of the array is automatically fixed
to 5 by the C compiler in the above statement. It gives the opportunity to the programmer to
add as many elements as he wish to add into the 1D array.

Method 3: In this technique we can initialize the elements of the array individually with the
help of the index as mentioned below.

int a[5];

a[0] = 10;
a[1] = 20;
a[2] = 30;
a[3] = 40;
a[4] = 50;

But the above mentioned procedure is not efficient, because here every elements are being
initialized separately using the assignment operator. Hence if 100 elements of an array are to
be initialized using this Method 3, we have to use 100 assignments for 100 elements one by
one which is a cumbersome task. Therefore this method is not accepted for array
initialization.

Method 4: Here the initialization of the elements are done using a loop as given below.

int a[5], i;
int j = 10;

for(i=0; i<5; i++)
{

a[i] = j;
j = j + 10;

}

Among the above mentioned four methods Method 1 and Method 3 are not used due their
limitations. Therefore Method 2 and Method 4 are generally used in various C programs.

 CH: 3 – Array 3.5

➢ What happens if the number of elements initialized in an array is less than the size of the
array ?

Solution: Suppose three elements of an array ‘a’ is initialized to some values where the size
of the array is declared as 5 using the following statement.

int a[5] = {10, 20, 30};

Here it can be seen that only 3 elements (1st, 2nd and 3rd element) of the array are initialized
with 10, 20 and 30 respectively instead of 5 elements. Now a question comes obviously that
what will be the values of 4th and 5th element after this initialization. In this situation the
remaining elements will be automatically filled by zero. Therefore 4th element (a[3]) and 5th

element (a[4]) will become zero.

➢ How are all the elements of a 1D array of size 100 initialized with zero ?

Solution: To initialize a 1D array of size 100 with the value zero we have to follow the
method given below.

int a[100] = {0};

When the above statement is complied the 1st element i.e. a[0] is made zero and the rest of the
all 99 elements become zero automatically by the compiler of C. In this way it is possible to
make all the elements of a 1D array to be zero very easily.

Note:
1. int a[10] = { }; is illegal, because we have to specify atleast one value inside the curly
braces.
2. int a[5] = {10, 20, 30, 40, 50, 60}; is also illegal, because the number of elements
initialized is larger than the size of the array.

Designated Initialization of 1D array – If we want to initialize some elements to be
initialized with some non-zero values randomly (not sequentially) and other remaining
elements to be zero, then it is better to use designated initialization of an array. For example
1st, 3rd and 7th elements are to be initialized with 45, 36 and 21 respectively and other elements
like 2nd, 4th, 5th, 6th, 8th, 9th, 10th elements should be zero. In this case we have to use the
following statement to accomplish this.

int a[10] = {[0] = 45, [2] = 36, [6] = 21};

In the above syntax the values inside the square brackets indicates the indices of 1st, 3rd and 7th

element of the 1D array. This way of initialization is called designated initialization and each
number in the square bracket is said to be a designator.

 CH: 3 – Array 3.6

➢ An array without any specified size is initialized using the statement “int a[] = {[0] = 45,
[2] = 36, [6] = 21}”. What will be the size of the array ?

Solution: It is being observed that the size of the array ‘a’ is not mentioned here and all the
initialization are done designated initialization. Here the compiler will deduce the size of
the 1D array from the largest designator in the list. Therefore the size of the array will be 7
in the above case, as the largest designator here is [6].

We can mix up the designated initialization and the normal initialization as follows.

int a[] = {1, 7, 5, [5] = 90, 6, [8] = 4};

The above statement is equivalent to the following initialization.

int a[] = (1, 7, 5, 0, 0, 90, 6, 0, 4};

The above two initialization implies that a[0] = 1, a[1] = 7, a[2] = 5, a[3] = 0, a[4] = 0, a[5] =
90, a[6] = 6, a[7] = 0, a[8] = 4.

➢ Consider the initialization “int a[] = {1, 2, 3, [2] = 4, [6] = 45};” for a 1D array. What
will be the value of third element of the array after this initialization ?

Solution: Here the important point is that, there is a coincidence between normal initialization
and designated initialization. Consider the above mentioned initialization where both the
normal and designated initialization are used at a time.

int a[] = {1, 2, 3, [2] = 4, [6] = 45};

In the above case the third element (a[2]) is made 3 using normal initialization and at the
same time it is assigned with a value of 4 using designated initialization. Naturally the
question arises, which value will be initialized for the 3rd element. Here designated
initialization will get the priority. That means, the value of the 3rd element will become 4
instead of 3. Therefore the equivalent statement for the above initialization will be given as:

int a[] = {1, 2, 4, 0, 0, 0, 45};

Advantages of designated initialization:
• No need to bother about the entries containing zero.

int a[10] = {45, 0, 36, 0, 0, 0, 21, 0, 0, 0};int a[10] = {[0] = 45, [2] = 36, [6] = 21};
The initialization can be performed in simpler way using designated initialization as
follows.

int a[10] = {[0] = 45, [2] = 36, [6] = 21};
• No need to bother about the order at all.

int a[10] = {[0] = 45, [2] = 36, [6] = 21};
int a[10] = {[2] = 36, [6] = 21, [0] = 45};

The above two statements give the same result.

 CH: 3 – Array 3.7

Memory representation of 1D array – We know that the elements are placed consecutively
into the memory in case of a 1D array. If a 1D array is declared as int type, each element of
the array will occupy 4 bytes in the memory space for a 32-bit architecture. If the starting
address or the base address of the 1D array is 1000, the first element of the array will be
stored from the address 1000 to 1003, the second element will be stored from 1004 to 1007,
third element will occupy from the address 1008 to 1011 etc. Hence it is clear that the starting
addresses of the consecutive elements in a 1D array will be incremented by 4 for a 1D array
declared as int. Similarly the starting addresses of the successive elements will be
incremented by 1 if the 1D array is declared as char. It implies that how much the addresses
of the consecutive elements will be increased in a 1D array, that depends on the data type of
the 1D array. A pictorial representation of the memory organization of an integer type 1D
array as well as char type 1D array has been depicted in Fig.3.4(a) and Fig.3.4(b) respectively
for better understanding of the above mentioned phenomenon.

 1D Array a of int type a[0] a[1] a[2] a[3] a[4]

 index→ 0 1 2 3 4

Starting Address→ 1000 1004 1008 1012 1016

Fig.3.4(a): Memory organization of int type 1D array of size = 5 and base address = 1000

 1D Array b of char type b[0] b[1] b[2] b[3] b[4]

 index→ 0 1 2 3 4

Starting Address→ 2000 2004 2008 2012 2016

Fig.3.4(b): Memory organization of char type 1D array of size = 5 and base address = 2 000

Now we can determine the starting address of any element of a 1D array ‘a’ using the
following formula and this formula can verified for the 1D array ‘a’ and ‘b’ in Fig.3.4.

Starting Address of a[i] = B + (i – i0) × W Where B = Base address of 1D array
W = Storage size of each element in the
 array in bytes
i = Index of the element in the array
i0 = Starting index of the 1D array

Now the storage size of every element in an array (W) depends on the date type of the array.
Different values of W depending on the data type of the array are given below.

W = 4 bytes for int data type
W = 8 bytes for long int data type
W = 4 bytes for float data type
W = 8 bytes for double data type
W = 1 byte for char data type

In C language the index of a 1D array starts from 0 always. That’s why i0 = 0 for the above
mentioned formula in C.

 CH: 3 – Array 3.8

2) Two dimensional array or 2D array – 2D array is an array where the elements are
arranged sequentially in two directions – along the row and along the column. The elements
of a 2D array is placed like a 2D matrix. The elements of a 2D array are accessed by two
indices, one index gives the row-wise position and another index gives the column-wise
position. Hence any element of a 2D array may be demoted by a[i][j] where i is the row index
and j is the column index. The pictorial view of a 2D array with 5 rows and 6 columns is
shown in Fig.3.5.

 j
 ↓ i→ 0 1 2 3 4 5

 0 a[0][0] a[0][1] a[0][2] a[0][3] a[0][4] a[0][5]

 1 a[1][0] a[1][1] a[1][2] a[1][3] a[1][4] a[1][5]

 2 a[2][0] a[2][1] a[2][2] a[2][3] a[2][4] a[2][5]

 3 a[3][0] a[3][1] a[3][2] a[3][3] a[3][4] a[3][5]

 4 a[4][0] a[4][1] a[4][2] a[4][3] a[4][4] a[4][5]

F ig.3. 5 : 2D array with 5 rows and 6 columns

In Fig.3.5 we can see that every elements of the 2D array is represented by the array notation
in C language. For example – a[0][0] is the element with 1st row and 1st column, a[4][2] is the
element with 5th row and 3rd column. The 1st index inside the square bracket denotes the row
of the array whereas 2nd index denotes the column of the array. Therefore in general a[i][j]
denotes (i + 1)th row and (j + 1)th column of the 2D array. Therefore a 2D array with m no.
of rows and n no. of columns can hold maximum (m × n) no. of elements.

Declaration of 2D array - A two dimensional array is declared as follows in C.

data_type ArrayName[SizeOfRow][SizeOfColumn];

• data type – the kind of values it can store, for example, int , char , float , double .
• ArrayName – to identify the array.
• SizeOfRow – the maximum number of rows that the array can hold.
• SizeOfColumn – the maximum number of columns that the array can hold.

For example, an integer type 2D array with 4 rows and 5 columns is declared as follows.

int a[4][5];

Accessing the elements of 2D array – To access a particular element of a 2D array we have
to write the array name followed by the row index of the element enclosed within a square
bracket and the column index of the element enclosed with another square bracket like
ArrayName[i][j] where i and j are the row index and the column index of the particular
element of the array. If we want to access 1st element of the 2D array named ‘a’, we should
use a[0][0] where both zeros indicates the row index and the column index of the array.

 CH: 3 – Array 3.9

Initialization of 2D array – There are two methods by which a 2D array can be initialized to
some values.

Method 1: In this method a 2D array is initialized as follows.

int a[2][3] = {1, 2, 3, 4, 5, 6};

In the above case the number of rows is 2 and the number of columns is 3. Therefore total
number of elements present in the 2D array is (2 × 3) = 6. Now the first three values will be
assigned to the elements of the first row sequentially which results a[0][0] = 1, a[0][1] = 2,
a[0][2] = 3. Similarly the values 4, 5 and 6 will be stored into the elements a[1][0], a[1][1]
and a[1][2] respectively. The pictorial view of the 2D array is shown in Fig.3.6 after the
initialization.

 j
 ↓ i→ 0 1 2

 0 a[0][0] a[0][1] a[0][2]

 1 a[1][0] a[1][1] a[1][2]

↓
 j
 ↓ i→ 0 1 2

 0 1 2 3

 1 4 5 6

F ig.3. 6 : 2D array after initialization

Method 2: This method is better than Method 1 as the initialization of the elements can be
visualized more clearly than Method 1. In this method the initialization is done by the
following way.

int a[2][3] = {{1, 2, 3}, {4, 5, 6}};

From the above statement it is clear that first curly braces denotes the first row and the
second curly braces denotes the 2nd row of the 2D array. Here we shall get the same results
after initialization as shown in Fig.3.6.

 CH: 3 – Array 3.10

Memory representation of 2D array – There are basically two types of conventions by
which a 2D array may be represented namely row major and column major.

1. Row major ordering - A 2D array can be considered as the combination of some 1D
arrays, because each row of a 2D array may be considered as a 1D array. Therefore we can
assume that there are m number of 1D arrays of size = n in a 2D array of m no. of rows and n
no. of columns. If we consider a 2D array of size = 2 × 3, there will be two 1D arrays with 3
elements each as shown in Fig.3.7.

2D Array a of 2 rows and 3 columns

 j
 ↓ i→ 0 1 2

 0 a[0][0] a[0][1] a[0][2]

 1 a[1][0] a[1][1] a[1][2]

↓
 1D Array a0 a0[0] a0[1] a0[2]

 index→ 0 1 2

 1D Array a1 a1[0] a1[1] a1[2]

 index→ 0 1 2

F ig.3. 7 : 2D array of size = 2 × 3 represented by two 1D arrays

We know that the elements are placed consecutively into the memory in case of a 1D array. If
a 1D array is declared as int type, each element of the array will occupy 4 bytes in the
memory space for a 32-bit architecture. According to the memory mapping of 1D array which
has already been discussed previously the starting addresses of the consecutive elements in an
integer type 1D array will be incremented by 4.

Memory mapping of a 2D array starts with the memory mapping of the first 1D array, then
the second 1D array, after that third 1D array and so on sequentially. That means after the last
element of 1st 1D array the 1st element of 2nd 1D array will be memory-mapped and after the
last element of 2nd 1D array first element of 3rd 1D array comes. In this way the entire 2D
array is memory-mapped row-wise as shown in Fig.3.8. This type of ordering of memory
addresses in case of a 2D array is called as row major order. It is important to mention that C
language follows row major form to represent the memory organization of a 2D array.

 CH: 3 – Array 3.11

 j
 ↓ i→ 0 1 2 3 4 5

 0
a[0][0]

1000
a[0][1]

1004
A[0][2]

1008
A[0][3]

1012
a[0][4]

1016
a[0][5]

1020

 1
a[1][0]

1024
a[1][1]

1028
A[1][2]

1032
A[1][3]

1036
a[1][4]

1040
a[1][5]

1044

 2
a[2][0]

1048
a[2][1]

1052
A[2][2]

1056
A[2][3]

1060
a[2][4]

1064
a[2][5]

1068

Nate: The number written in italics under each element of the 2D array in every cell are the
starting address of every element.

Fig.3.8: Row major ordering for memory representation of a 2D array of size (3 × 6)

The following formula determines the address of any element in a 2D array of size (m × n)
using row major ordering.

Address of a[i][j] = B + W × [(i – i0) × n + (j – j0)]

B = Base address of the 2D array
W = Storage size of each element in the 2D array in bytes
n = Maximum number of columns in the 2D array
i = Row index of the element a[i][j]
i0 = Starting row index of the 2D array
j = Column index of the element a[i][j]
j0 = Starting column index of the 2D array

Now we shall verify the above mentioned formula of row major ordering with the help of the
2D array shown in Fig.3.8. Suppose the address of the element a[2][3] is to be determined
using this formula. In this case we have the values of the following parameters.

B = 1000, W = 4 bytes, n = 6, i = 2, i0 = 0, j = 3, j0 = 0

.·. Address of the element a[2][3] = B + W × [(i – i0) × n + (j – j0)]
 = 1000 + 4 × [(2 – 0) × 6 + (3 – 0)]
 = 1000 + 4 × [12 + 3]
 = 1060

If the memory mapping of the 2D array shown in Fig.3.8 is compared with this result, it is
exactly the same as before.

 CH: 3 – Array 3.12

2. Column major ordering – In case of column major ordering the addresses of the
successive elements are incremented by 4 column-wise. It says that the memory mapping is
done for 1D array corresponding to 1st column, then for the 1D array corresponding to 2nd

column and so on. After the address of the last element from the 1st column array the address
of the first element of the 2nd column array comes. Column major ordering for a (3 × 6) 2D
array is shown in Fig.3.9.

 j
 ↓ i→ 0 1 2 3 4 5

 0
a[0][0]

1000
a[0][1]

1012
A[0][2]

1024
A[0][3]

1036
a[0][4]

1048
a[0][5]

1060

 1
a[1][0]

1004
a[1][1]

1016
A[1][2]

1028
A[1][3]

1040
a[1][4]

1052
a[1][5]

1064

 2
a[2][0]

1008
a[2][1]

1020
A[2][2]

1032
A[2][3]

1044
a[2][4]

1056
a[2][5]

1068

Nate: The number written in italics under each element of the 2D array in every cell are the
starting address of every element.

Fig.3. 9 : Column major ordering for memory representation of a 2D array of size (3 × 6)

The following formula determines the address of any element in a 2D array of size (m × n)
using column major ordering.

Address of a[i][j] = B + W × [(i – i0) + (j – j0) × m]

B = Base address of the 2D array
W = Storage size of each element in the 2D array in bytes
m = Maximum number of rows in the 2D array
i = Row index of the element a[i][j]
i0 = Starting row index of the 2D array
j = Column index of the element a[i][j]
j0 = Starting column index of the 2D array

Now we shall verify the above mentioned formula of column major ordering with the help of
the 2D array shown in Fig.3.9. Suppose the address of the element a[2][3] is to be determined
using this formula. In this case we have the values of the following parameters.

B = 1000, W = 4 bytes, m = 3, i = 2, i0 = 0, j = 3, j0 = 0

.·. Address of the element a[2][3] = B + W × [(i – i0) + (j – j0) × m]
 = 1000 + 4 × [(2 – 0) + (3 – 0) × 3]
 = 1000 + 4 × [2 + 9] = 1044 (Verified from Fig.3.9)

Here one point is important that the address of the last element of a 2D array will be same for
both of the row major and the column major ordering.

 CH: 3 – Array 3.13

Limitations of Array:
1) Arrays are declared as fixed size. If it is required to handle more number of elements than

the size of the array, it is not possible to do that. Due to this reason array is referred as
static data structure.

2) Data elements of an array are stored in continuous memory locations which may not be
available always.

3) Insertion and deletion of element in case of array becomes problematic because of shifting
of elements from their positions.

Different operation on a 1D array – In this section we shall discuss few operations which
may be performed on a 1D array..

1. Insertion of an element into a 1D array – This operation inserts a new element at a
specified position of the 1D array. If the position ‘pos’ is specified, then all the elements right
of the position ‘pos’ and the element at position ‘pos’ will be shifted one position right to
make a vacant space for the insertion of a new element.

Time complexity for the best case: When the new element is inserted at the last position, it is
required to shift the last element only from (n – 1)th index to nth index of the array.
Therefore only one shifting is required and this becomes the bast case. So the time
complexity here will be O(1).

Time complexity for the worst case: When the new element is to be inserted at the 1st

position, all the elements of the array (from 1st position to the last position) should be shifted
right. Hence there will be n no. of shifting from the element a[0] to a[n-1], which becomes
the worst case. Therefore time complexity for the worst case becomes O(n).

Algorithm to insert an element at a specific position of an array:

Step 1: Start

Step 2: Input the element which is to be inserted into the variable ‘element’.

Step 3: Input the position at which the element is to be inserted into the variable ‘pos’.

Step 4: Set i = n – 1 [n is the size of the 1D array]

Step 5: Repeat Step 6 to Step 7 while i >= pos – 1.

Step 6: Set a[i + 1] = a[i]

Step 7: Set i = i – 1

Step 8: Set a[pos – 1] = element [To insert the element at specific position]

Step 9: Set n = n + 1

Step 10: Stop

 CH: 3 – Array 3.14

User defined function in C to insert an element at a specific position of the array.

int Insert(int a[],int n)
{

int i, element, pos;

printf("Enter the element to be inserted: ");
scanf("%d", &element);

printf("Enter the position for insertion: ");
scanf("%d", &pos);

for(i=n-1; i>=pos-1; i--)
a[i+1] = a[i];

a[pos - 1] = element;

return n+1;
}

2. Deletion of an element from a 1D array – This operation will remove an existing element
from the array. For this purpose the position ‘pos’ at which the element will be deleted is
taken as input and all the elements beyond the index (pos – 1) will be shifted left by one
position, which will replace the element at index (pos – 1) by the element at index pos. Thus
the element at the specified position ‘pos’ will be removed.

Time complexity for the best case: The best case happens when the element at the last
position is deleted. Here no left shifting is required to remove the last element, only the
length of the array is decreases from n to (n – 1). Therefore the time complexity becomes
O(1).

Time complexity for the worst case: The worst case occurs when 1st element is to be removed
from the array. In this case all the elements starting from 2nd position to nth position are
shifted left by one position. Thus we require (n – 1) no. of left shifting to accomplish this
task. Therefore time complexity for the worst case becomes O(n).

Algorithm to delete an element at a specific position of an array:

Step 1: Start

Step 2: Input the position at which the element is to be deleted into the variable ‘pos’.

Step 3: Set i = pos – 1.

 CH: 3 – Array 3.15

Step 4: Repeat Step 5 to Step 6 while i <= n – 2 [n is the size of the 1D array]

Step 5: Set a[i] = a[i+1].

Step 6: Set i = i + 1

Step 7: Set n = n – 1

Step 8: Stop

User defined function in C to delete an element at a specific position of the array.

int Delete(int arr[],int n)
{

int i, pos;

printf("Enter the position for deletion: ");
scanf("%d", &pos);

for(i=pos-1; i<n-1; i++)
arr[i] = arr[i+1];

return n-1;
}

 CH: 3 – Array 3.16

The entire C program to insert an element to a specified position of an array and also delete
an element from a specified position of the same array is given below.

C program to insert an element to a specified position of an array and also delete an
element from a specified position of the same array.

#include<stdio.h>
#include<stdlib.h>
#define Min 10
#define Max 100
#define ArrayLen 100

void Create(int [],int);
void Display(int [],int);
int Insert(int [],int);
int Delete(int [],int);

int main()
{

int a[ArrayLen], n, option;
int element, pos;

printf("Enter the number of elements to create the array: ");
scanf("%d", &n);

Create(a, n);

printf("The elements of the created array:\n");
Display(a, n);

while(1)
{

printf("******************************\n");
printf("Press 1 to insert an element.\n");
printf("Press 2 to delete an element.\n");
printf("Press 0 to exit the program.\n");
printf("******************************\n");
printf("Enter your option: ");
scanf("%d", &option);

switch(option)
{

case 0: exit(1);

case 1: n = Insert(a, n);
printf("The elements of the array after insertion:\n");
Display(a, n);
break;

 CH: 3 – Array 3.17

case 2: n = Delete(a, n);
printf("The elements of the array after deletion:\n");
Display(a, n);
break;

default: printf("Wrong option is selected.\n");
 break;

}
}

return 0;
}

void Create(int arr[],int n)
{

int i;

for(i=0; i<n; i++)
arr[i] = rand() % (Max - Min + 1) + Min;

}

void Display(int arr[],int n)
{

int i;

for(i=0; i<n; i++)
printf("%d ", arr[i]);

printf("\n");
}

int Insert(int arr[],int n)
{

int i, element, pos;

printf("Enter the element to be inserted: ");
scanf("%d", &element);
printf("Enter the position for insertion: ");
scanf("%d", &pos);

for(i=n-1; i>=pos-1; i--)
arr[i+1] = arr[i];

arr[pos - 1] = element;

return n+1;
}

 CH: 3 – Array 3.18

int Delete(int arr[],int n)
{

int i, pos;

printf("Enter the position for deletion: ");
scanf("%d", &pos);

for(i=pos-1; i<n-1; i++)
arr[i] = arr[i+1];

return n-1;
}

Chapter 4

Stack

 CH: 4 – Stack 4.1

A stack is a linear data structure where insertions and deletions are allowed only at the one
end which is called the top of the stack. Real life examples of the stack is – 1) stack of books
2) stack of coins. In case of a stack of books normally the top-most book can be picked up
and if a new book is to be inserted, it can be placed on the top of the stack. In this case one
may ask, any book except the top-most one may be taken out carefully, but if the entire stack
of books is kept inside a jar, then it will be possible only to take out a book from the top.

Therefore it is clear that the top-most element of the stack is inserted at last and it will be
taken out first. Due to this reason, the stack is called LIFO (Last-in First-out) data structure.
Different operations like – push, pop, peek can be performed on a stack. Stack can be
implemented either by using arrays or by using linked list. In this chapter the array
implementation of the stack will be discussed first, then implementation using linked list will
be covered. Before discussing different operations on stack it is important to explain how a
stack can be initialized using array.

Initialization of Stack using array – In case of array implementation a stack is
represented by a one dimensional array where each cell of the array is capable to hold the
element inserted into the stack. That means the first element of the stack is placed in the cell
with index 0, the second element is placed in the cell with index 1 and so on. It is clear from
this discussion that the side of the array towards the index 0 is treated as bottom of the stack
and the opposite side of the array is considered the open end or top of the stack where
insertion or deletion may take place.

If stack is implemented by an array named ‘Stack’, then it will be declared by the following
statement.

Date_type Stack[10];

So it is similar to the declaration of a normal array. As Stack is a normal array, insertion and
deletion operation can be performed at any place i.e. at any index of the array. But according
to the property of a stack insertion and deletion may happen only at one end of the stack.
Hence to implement a stack using array, we have to do something so that the array ‘Stack’
can behave like a stack.

As insertion and deletion are performed at one end called top of the stack, we need a variable
‘top’ which will be used to keep track of the last inserted element or topmost element of the
array which is used as a stack. Basically here the variable ‘top’ will always hold the index
value of the topmost element of the stack. Now initially the stack will be empty i.e. no
element will be present inside the stack. Now the question arises “What will be the initial
value of the variable ‘top’ ?”. We know that the valid index value of a stack starts from 0.
This implies that any positive value along with 0 is considered as valid index of an array.
Therefore initially for an empty stack the variable ‘top’ should be assigned to a negative
value. Now the question comes “Which negative value ?”. If the first element is inserted into
the stack, it occupies the cell with index 0 and becomes the topmost element of the stack. To
track this topmost element the variable ‘top’ must hold the index value 0 after increment by
one. Therefore the variable ‘top’ must be initialized with -1. Each time during push operation
one element is inserted into the stack and the value of the ‘top’ variable is incremented by

 CH: 4 – Stack 4.2

one. On the contrary, each time during the pop operation, the topmost element is taken out of
the stack and the variable ‘top’ is decremented by one. Thus the variable ‘top’ always holds
the index value of the topmost element of the stack.

The declaration of the stack using array and initialization of the variable ‘top’ is given below.

#define Max 10
Data_type Stack[Max];
int top = -1;

Now the array ‘Stack’ and the variable ‘top’ will be utilized by the different user-defined
functions used for the implementation of the various operations of the stack like push, pop,
isEmpty, isFull etc. For this reason the array ‘Stack’ and the variable ‘top’ is declared globally
outside the main function to avoid the passing the entire stack array and the ‘top’ variable
every time during the use of these functions. The global declaration of the stack is shown
below for clarification.

#include<stdio.h>
#define Max 10

Data_type Stack[Max];
int top = -1;

int main()
{

.

.

.

.
}

Operation on Stack – The operations on stack is categorized into two categories – 1)
primary operation and 2) secondary operation.

1) Primary Operations – Under primary operations we have push and pop operations.

1. Push – This operation inserts data onto the stack. i.e. after insertions the newly inserted
data becomes top-most element of the stack. Suppose we want to insert three elements (25,
10, 7) onto the stack one by one starting from left to right. That means, 25 will be pushed
first, then 10 and so on. Pushing of these three numbers on the stack is shown pictorially in
Fig.4.1.

 CH: 4 – Stack 4.3

Element before insertion Status of Stack after push operation

25

10

7

Fig.4.1: Three numbers 25, 10, 7 are pushed into the stack one by one

We know that the variable ‘top’ is -1 when the stack is empty. When an element is pushed
first on the stack, the ‘top’ will be incremented by one first to become 0 which is a valid
index. Now the element is stored in Stack[top] of the array. One point is important to
mention here that we can not push elements indefinitely on the stack in case of the array
implementation. It is restricted by the maximum size of the array used for stack. If the
maximum size of the array is 10, we can not insert 11 number of elements into the stack. If
the maximum number of elements have been inserted into the stack, then the stack is said
to be full. Therefore when the stack is full, then the value of the variable ‘top’ becomes
(Max – 1) and in this situation no more element can be pushed. This status of the stack is
also known as “STACK OVERFLOW”. The algorithm of push operation is given below.

Algorithm of push operation:

Step 1: Start

Step 2: If the stack is Full, then
a) Print ‘STACK OVERFLOW’.
b) Go to Step 5.

 [End of If]

Step 3: Set top = top + 1

Step 4: Set Stack[top] = Value

Step 5: Stop

Empty
Stack

 25

 25

 10

 25

 10
 7

 CH: 4 – Stack 4.4

User defined function in C to push an element on the stack

void Push(int number)
{

if(isFull())
{

printf("STACK OVERFLOW\n");
return;

}
stack[++top] = number;

}

2. Pop – This operation removes the top-most element from a stack. Suppose we want to
pop two elements from the stack of three elements as shown in Fig.4.1. How the two
elements are popped from the stack is shown in the following figure with the
corresponding status of the stack.

Status of Stack after pop operation Element popped from the stack

7

10

Fig.4.2: Three elements are popped from the stack one by one

Algorithm of pop operation:

Step 1: Start

Step 2: If the stack is Empty, then
a) Print ‘STACK UNDERFLOW’.
b) Go to Step 5.

 [End of If]

Step 3: Set Value = Stack[top]

Step 4: Set top = top – 1

Step 5: Stop

 25

 25

 10

 7

 25

 10

 CH: 4 – Stack 4.5

User defined function in C to pop an element from the stack

int Pop()
{

if(isEmpty())
{

printf("STACK UNDERFLOW\n");
exit(1);

}

return stack[top--];
}

2) Secondary Operations – Secondary operations on stack include isFull, isEmpty and Peek.

1. isFull – In case of array implementation of stack, the stack is initialized as an array with
its maximum size. During initialization of a stack the maximum size is defined by a macro
‘Max’ which is equal to 10. Therefore the stack can hold maximum 10 number of data. If
11th data is attempted to pushed on the stack, this will not be allowed. This situation is
known as “STACK OVERFLOW”. The operation “isFull” checks that the stack is already
full with data or not. If the top variable is equal to the maximum index value which is
(Max – 1), the “isFull” function returns 1 to indicate that the stack is full. If top is less than
(Max – 1), it returns 0 to show that the stack is not full. The algorithm for isFull operation
is given below.

Algorithm of isFull operation:

Step 1: Start

Step 2: If top = Max – 1, then
a) Return 1 (True)

 otherwise
b) Return 0 (False)

 [End of If]

Step 3: Stop

User defined function in C for isFull operation

int isFull()
{

if(top == Max - 1)
return 1;

else
return 0;

}

 CH: 4 – Stack 4.6

2. isEmpty – If there is no element in the stack, the stack is said to be empty. The isEmpty
operation checks whether the stack is empty or not. In case of array implementation of the
stack, the top variable is initialized to -1 which is an invalid index in case of any array. If
the stack comprises one element, the top will hold index value 0. Therefore the top should
hold -1 for empty stack so that it can be incremented to 0 when the first element of the
stack is pushed. The isEmpty function checks the status of the variable top. If top is equal
to -1, it implies that the stack is empty and the function isEmpty returns 1 in that case. If
top is not equal to -1, the function isEmpty returns 0 for non-empty status of the stack.

Algorithm of isEmpty operation:

Step 1: Start

Step 2: If top = – 1, then
a) Return 1 (True)

 otherwise
b) Return 0 (False)

 [End of If]

Step 3: Stop

User defined function in C for isEmpty operation

int isEmpty()
{

if(top == -1)
return 1;

else
return 0;

}

3. Peek – Peek operation gives the value of the topmost element of the stack without
removing it from the stack. That means, the peek and pop both operations return the
topmost element of the stack, but in case of pop the topmost element is removed from the
stack whereas in case of peek operation the top element will not be deleted. Therefore the
top variable will not be decremented by one for peek operation. In C the value of
stack[top] gives the topmost element to implement the peek function whereas stack[top--]
implement the pop operation.

 CH: 4 – Stack 4.7

Evaluation of Arithmetic Expression – Infix, prefix and postfix notations are the
three different notations of writing algebraic expressions. Among these three notations we are
mainly familiar with the infix notation to evaluate an algebraic expression.

1) Infix Notation – While writing an algebraic expression using infix notation, the
operator is placed in between the operands. For example – A + B is an infix notation. Here the
‘+’ operator is placed in between two operands A and B. In an infix expression the evaluation
of the operands depends on the precedence and associativity of the operators. This implies
that the operands with operator of highest precedence will be evaluated first. Let’s take an
example.

We have to determine the value of the infix expression “10 + 4 * 5”. Here “4 * 5” will be
determined before “10 + 4” as * operator has higher precedence over + operator. Now the
result of “4 * 5” will be added to 10. Thus the expression will give the value of 30.

For simplicity of the algebraic expression we shall deal with only ‘^’, ‘*’, ‘/’, ‘%’, ‘+’, ‘-’
operators and parenthesis ‘()’ in an infix expression. The following table gives the
precedence and associativity of the above operators along with the priority level.

Precedence and Associativity Table-4.1

Level Category Operators Associativity

1 Parenthesis () → parenthesis Left to Right

2 Exponential ^ →Power Left to Right

3 Multiplicative * → Multiplication
/ → Division
% → Modulo division

Left to Right

4 Additive + → Addition
- → Subtraction

Left to Right

Determination of an infix expression is done using the precedence and associativity of the
operators given in the above table. Let’s take some examples to clarify this concept.

 CH: 4 – Stack 4.8

Example1: Evaluate the infix expression 8 + 4 * (6 / 3) / 8 – 2 ^ 3

Steps Evaluation of Infix expression Remarks

1 8 + 4 * (6 / 3) / 8 – 2 ^ 3
= 8 + 4 * 2 / 8 – 2 ^ 3

Parenthesis () has highest precedence. That’s
why the expression between the parenthesis will
be evaluated first.

2 8 + 4 * 2 / 8 – 2 ^ 3
= 8 + 4 * 2 / 8 – 8

Now ^ operator will be evaluated due to its
highest priority.

3 8 + 4 * 2 / 8 – 8
= 8 + 8 / 8 – 8
= 8 + 1 - 8

Now * and / both have the highest priority. So as
per the rule of associativity left to right
evaluation will be performed.

4 8 + 1 – 8
= 9 – 8
= 1

+ and - both have the highest priority. So as per
the rule of associativity left to right evaluation
will be performed.

Disadvantage: It is being seen from the above evaluation that the evaluation is not performed
left to right always. It is done randomly depending upon the precedence of the operators. To
determine the infix expression in a computer, it will be required to scan the expression
multiple times from left to right which causes wastage of time.

To solve this problem postfix or prefix notation is used in a computer to evaluate an
expression.

2) Postfix Notation - It was developed by Jan Łukasiewicz who was a Polish logician,
mathematician and philosopher. His aim was to develop a parenthesis-free prefix notation
(also known as Polish notation) and a postfix notation, which is better known as Reverse
Polish Notation or RPN. In postfix notation, as the name suggests, the operator is placed after
the operands.

For example, if an expression is written as A+B in infix notation, the same expression can be
written as AB+ in postfix notation. The order of evaluation of a postfix expression is always
from left to right. Even brackets cannot alter the order of evaluation. A postfix operation does
not even follow the rules of operator precedence. The operator which occurs first in the
expression is operated first on the operands. For example, given a postfix notation AB+C* .
While evaluation, addition will be performed prior to multiplication. Thus we see that in a
postfix notation, operators are applied to the operands that are immediately left to them.

Advantage: It requires only a single scan to evaluate an expression which makes the postfix
expression preferable for computer.

 CH: 4 – Stack 4.9

Validity of an infix expression – Checking the validity of an infix expression is
essential before evaluating an infix expression. Here validity of an infix expression involves
the brackets used in the expression. An infix expression will be considered as valid if the
following conditions are satisfied.

1. The total number of left brackets must be equal to the total number of right brackets used
in the infix expression. Here left brackets means the opening brackets and right brackets
indicates the closing brackets.

2. For every right bracket there should be a left bracket of the same type. This implies that
there must be a closing or right parenthesis ‘)’ immediately after the opening or left
parenthesis ‘(‘ i.e. there should not be any right curly brace ‘}’ or right square brace ‘]’
after the left parenthesis ‘(‘.

Now an infix expression may be invalid due to the following three reasons.

1. Number of left brackets is greater than the number of right brackets. For example – [{(2 +
3) * 5}.

2. Number of right brackets is greater than the number of left brackets. For example – {(2 +
3) * 5}].

3. Mismatch occurs between left bracket and right bracket. For example – [{(2 + 3) * 5]}.

Algorithm to check the validity of an infix expression:

Step 1: Start

Step 2: Scan every character of the infix expression from left to right and repeat Step 3 to
Step 4 until the end of the infix expression.

Step 3: If the character is a left bracket, then
a) push the character on the stack.
[End of If (Step 3)]

Step 4: If the character is a right bracket, then
a) If the stack is empty, then

i) Print “Invalid expression as no. of right brackets is greater than no. of left
brackets”.

[End of If (a)]

b) Pop the top-most bracket from the stack.

c) If the popped left bracket does not match the right bracket, then
i) Print “Invalid expression due to mismatch in brackets”.
[End of If (c)]

 CH: 4 – Stack 4.10

Step 5: If the stack is empty after scanning the entire expression, then
a) Print “Valid expression”.
Otherwise,
b) Print “Invalid expression as no. of left brackets is greater than no. of right

brackets”.

Step 6: Stop.

C Program to check the validity of an infix expression

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#define Max 100
#define MaxLen 50

char stack[Max];
int top = -1;

void Push(char);
int isFull();
char Pop();
int isEmpty();
int ExpValidity(char []);

int main()
{

char infix[MaxLen];

printf("Enter the Expression: ");
gets(infix);

if(ExpValidity(infix))
printf("The expression is valid.\n");

else
printf("The expression is not valid.\n");

return 0;
}

 CH: 4 – Stack 4.11

int ExpValidity(char infix[])
{

int i, StrLen;
char symbol;

StrLen = strlen(infix);

for(i=0; i<StrLen; i++)
{

symbol = infix[i];

switch(symbol)
{

case '(':
case '{':
case '[': Push(symbol);

 break;
case ')': if(isEmpty())

 {
 printf("No. of right brackets is more than no. of left

brackets.\n");
 return 0;
 }

 if(Pop() != '(')
 {
 printf("Bracket Mismatch.\n");
 return 0;
 }

 break;

case '}': if(isEmpty())
 {
 printf("No. of right brackets is more than no. of left

brackets.\n");
 return 0;
 }

 if(Pop() != '{')
 {
 printf("Bracket Mismatch.\n");
 return 0;
 }

 break;

 CH: 4 – Stack 4.12

case ']': if(isEmpty())
 {
 printf("No. of right brackets is more than no. of left

brackets.\n");
 return 0;
 }

 if(Pop() != '[')
 {
 printf("Bracket Mismatch.\n");
 return 0;
 }

 break;

default: break;
}

}

if(isEmpty())
return 1;

else
{

printf("No. of left brackets is more than no. of right brackets.\n");
return 0;

}
}

void Push(char ch)
{

if(isFull())
{

printf("STACK OVERFLOW\n");
return;

}

stack[++top] = ch;
}

int isFull()
{

if(top == Max - 1)
return 1;

else
return 0;

}

 CH: 4 – Stack 4.13

char Pop()
{

if(isEmpty())
{

printf("STACK UNDERFLOW\n");
exit(1);

}

return stack[top--];
}

int isEmpty()
{

if(top == -1)
return 1;

else
return 0;

}

 CH: 4 – Stack 4.14

Conversion of an infix expression into a postfix expression – There are two
procedures by which an infix expression can be converted into a postfix expression. One
procedure is done manually and other is followed by a computer.

1. Infix to postfix conversion manually – In case of manual procedure the operator with
highest priority is identified first, then the part of the infix expression formed by that operator
and other two operands will be converted to its equivalent postfix expression. Now the
postfix expression thus formed will be considered as a single operand and again the operator
with highest precedence will be detected and converted to postfix notation. This process will
continue until the entire infix expression will be transformed to its equivalent postfix
expression. Here one point is essential to note that if two or more operators have the same
highest priority in any time, then the associativity rule should be applied for the conversion.
Let’s take some examples to clarify the process of conversion.

Example2: Convert the following infix expression to its corresponding postfix expression.
7 + 5 * 3 / 5 ^ 1 % 2 + (3 – 2)

Step Conversion of infix to postfix Remarks

1 7 + 5 * 3 / 5 ^ 1 % 2 + (3 - 2) Parenthesis () has highest precedence. That’s
why the expression within the parenthesis will
be converted first.

2 = 7 + 5 * 3 / 5 ^ 1 % 2 + [32-] The postfix notation 32- will be treated as a
single operand enclosed with square bracket.
Now the exponential operator ^ has the highest
priority

3 = 7 + 5 * 3 / [51^] % 2 + [32-] Now *, / and % have the same highest priority.
So as per the rule of associativity left to right
evaluation will be performed. Hence the infix
expression 5 * 3 will be converted to its postfix
equivalent first.

4 = 7 + [53*] / [51^] % 2 + [32-] According to the rule of associativity / operator
will be converted now.

5 = 7 + [53*51^/] % 2 + [32-] Now % operator having the highest priority will
be dealt with.

6 = 7 + [53*51^/2%] + [32-] Both of the operators are + with same
precedence. Therefore leftmost + operator will
be considered first.

7 = [753*51^/2%+] + [32-]

8 = 753*51^/2%+32-+

Note: After the conversion from infix notation to postfix notation, the generated postfix
notation is treated as a single operand. To maintain the clarity the converted postfix
expression is enclosed with square brackets.

 CH: 4 – Stack 4.15

Example3: Convert the following infix expression to its corresponding postfix expression.
A – (B / C + (D % E * F) / G) * H

Step Conversion of infix to postfix Remarks

1 A – (B / C + (D % E * F) / G) * H

2 = A – (B / C + ([DE%] * F) / G) * H Self explanatory

3 = A – (B / C + [DE%F*] / G) * H Self explanatory

4 = A – ([BC/] + [DE%F*] / G) * H Self explanatory

5 = A – ([BC/] + [DE%F*G/]) * H Self explanatory

6 = A – [BC/DE%F*G/+] * H Self explanatory

7 = A – [BC/DE%F*G/+H*] Self explanatory

8 = ABC/DE%F*G/+H*- Self explanatory

 CH: 4 – Stack 4.16

2. Infix to postfix conversion using stack – In computer the conversion of an infix
expression to its equivalent postfix expression is done by using stack. Here for simplicity of
the operation, only exponential (^), multiplication (*), division (/), modulus (%), addition (+)
and subtraction (-) operators are considered in the infix expression. The algorithm to convert
the infix expression to the postfix expression is given below.

Algorithm of Infix to Postfix conversion:

Step 1: Start

Step 2: Scan every character of the infix expression from left to right and repeat Step 3 to
Step 6 until the end of the infix expression.

Step 3: If the character is an operand, then
a) add the character to the postfix expression.

[End of If]

Step 4: If the character is a left parenthesis ‘(‘, then
a) push the character on the stack.

[End of If]

Step 5: If the character is a right parenthesis ‘)’, then
a) Repeatedly pop the operators from the stack and add it to the postfix expression

until a left parenthesis ‘(‘ is found.
b) Discard or remove the left parenthesis ‘(‘ from the stack and do not add it to the

postfix expression.
[End of If]

Step 6: If the character is an operator (^, *, /, %, +, -), then
a) Repeatedly pop the operators from the stack and add each operator (popped from

the stack) to the postfix expression which has the same or higher precedence than
the current operator.

b) Push the current operator on the stack.
[End of If]

Step 7: If the stack is not empty after scanning all the characters of the infix expression, then
a) Repeatedly pop from the stack and add it to the postfix expression until the stack is

empty.
[End of If]

Step 8: Stop

 CH: 4 – Stack 4.17

Example 4 – Convert the following infix expression to its equivalent postfix expression using
stack.

A – (B / C + (D % E * F) / G) * H

Infix character
scanned

Stack Postfix expression

A A

- - A

(- (A

B - (AB

/ - (/ AB

C - (/ ABC

+ - (+ ABC/

(- (+ (ABC/

D - (+ (ABC/D

% - (+ (% ABC/D

E - (+ (% ABC/DE

* - (+ (* ABC/DE%

F - (+ (* ABC/DE%F

) - (+ ABC/DE%F*

/ - (+ / ABC/DE%F*

G - (+ / ABC/DE%F*G

) - ABC/DE%F*G/+

* - * ABC/DE%F*G/+

H - * ABC/DE%F*G/+H

Scan complete ABC/DE%F*G/+H*-

Note: Here left side is considered as the bottom of the stack and the right side is treated as
the top of the stack.

 CH: 4 – Stack 4.18

Example 5 – Convert the following infix expression to its equivalent postfix expression using
stack.

K + L - M * N + (O ^ P) * W / U / V * T + Q

Infix character
scanned

Stack Postfix expression

K K

+ + K

L + KL

- - KL+

M - KL+M

* - * KL+M

N - * KL+MN

+ + KL+MN*-

(+ (KL+MN*-

O + (KL+MN*-O

^ + (^ KL+MN*-O

P + (^ KL+MN*-OP

) + KL+MN*-OP^

* + * KL+MN*-OP^

W + * KL+MN*-OP^W

/ + / KL+MN*-OP^W*

U + / KL+MN*-OP^W*U

/ + / KL+MN*-OP^W*U/

V + / KL+MN*-OP^W*U/V

* + * KL+MN*-OP^W*U/V/

T + * KL+MN*-OP^W*U/V/T

+ + KL+MN*-OP^W*U/V/T*+

Q + KL+MN*-OP^W*U/V/T*+Q

Scan Complete KL+MN*-OP^W*U/V/T*+Q+

 CH: 4 – Stack 4.19

C Program of Infix to Postfix Conversion

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#define Max 100
#define MaxLen 50

char stack[Max];
int top = -1;

void Push(char);
int isFull();
char Pop();
int isEmpty();
int ExpValidity(char []);
void InfixToPostfix(char [],char []);
int Precedence(char);

int main()
{

char infix[MaxLen], postfix[MaxLen];

printf("Enter the Expression: ");
gets(infix);

if(ExpValidity(infix))
{

InfixToPostfix(infix, postfix);
printf("The postfix expression: ");
printf("%s", postfix);

}
else
{

printf("The expression is not valid");
}
printf("\n");

return 0;
}

int ExpValidity(char infix[])
{

int i, StrLen;
char symbol;

StrLen = strlen(infix);

 CH: 4 – Stack 4.20

for(i=0; i<StrLen; i++)
{

symbol = infix[i];

switch(symbol)
{

case '(':
case '{':
case '[': Push(symbol);

 break;
case ')': if(isEmpty())

 {
 printf("No. of right brackets is more than no. of left

brackets.\n");
 return 0;
 }

 if(Pop() != '(')
 {
 printf("Bracket Mismatch.\n");
 return 0;
 }

 break;

case '}': if(isEmpty())
 {
 printf("No. of right brackets is more than no. of left

brackets.\n");
 return 0;
 }

 if(Pop() != '{')
 {
 printf("Bracket Mismatch.\n");
 return 0;
 }

 break;

case ']': if(isEmpty())
 {
 printf("No. of right brackets is more than no. of left

brackets.\n");
 return 0;
 }

 CH: 4 – Stack 4.21

 if(Pop() != '[')
 {
 printf("Bracket Mismatch.\n");
 return 0;
 }

 break;

default: break;
}

}

if(isEmpty())
return 1;

else
{

printf("No. of left brackets is more than no. of right brackets.\n");
return 0;

}
}

int Precedence(char symb)
{

switch(symb)
{

case '^': return 3;
case '*':
case '/':
case '%': return 2;
case '+':
case '-': return 1;
default: return 0;

}
}

 CH: 4 – Stack 4.22

void InfixToPostfix(char infix[],char postfix[])
{

int i, j = 0, StrLen;
char symbol, ch;

StrLen = strlen(infix);

for(i=0; i<StrLen; i++)
{

symbol = infix[i];

switch(symbol)
{

case ' ': break;
case '(': Push(symbol);

 break;
case ')': while((ch = Pop()) != '(')

 postfix[j++] = ch;
 break;

case '+':
case '-':
case '*':
case '/':
case '%':

 case '^': while(!isEmpty() &&
Precedence(symbol) <= Precedence(stack[top]))

 postfix[j++] = Pop();

 Push(symbol);
 break;

default: postfix[j++] = symbol;
 break;

}
}

while(!isEmpty())
postfix[j++] = Pop();

postfix[j] = '\0';

}

 CH: 4 – Stack 4.23

void Push(char ch)
{

if(isFull())
{

printf("STACK OVERFLOW\n");
return;

}

stack[++top] = ch;
}

int isFull()
{

if(top == Max - 1)
return 1;

else
return 0;

}

char Pop()
{

if(isEmpty())
{

printf("STACK UNDERFLOW\n");
exit(1);

}

return stack[top--];
}

int isEmpty()
{

if(top == -1)
return 1;

else
return 0;

}

 CH: 4 – Stack 4.24

Evaluation of a postfix expression – It has been already discussed that a postfix
expression can be evaluated in a single scan by using stack. This ease of postfix evaluation
gives the way to convert an infix expression to its equivalent postfix expression first and then
the value of the expression is evaluated using that postfix expression.

Using stack a postfix expression can be evaluated very easily in a single scan. Every
character of the postfix expression is scanned from left to right. If the character is an operand,
it is pushed into the stack. If the character is found to be an operator, then the top two
operands are popped from the stack and the operator is applied on these popped two operand.
Thus the result achieved is again pushed onto the stack. The algorithm to evaluate a postfix
expression is given below.

Algorithm of Postfix Evaluation:

Step 1: Start

Step 2: Scan every character of the postfix expression from left to right and repeat Step 3 and
Step 4 until the end of the postfix expression.

Step 3: If the character is an operand, then
a) push the character on the stack.

[End of If]

Step 4: If the character is an operator, then
a) pop the top two operands out of the stack into the two variables A and B in such a

way that A becomes the topmost operand and B becomes the operand below the
topmost operand.

b) apply the operator on A and B to evaluate (B operator A).
c) push the result of the evaluation i.e. (B operator A) on the stack.

[End of If]

Step 5: After scanning all the characters of the postfix expression, the stack should have only
one element which is the ultimate result of the postfix expression. Pop the element
from the stack and print it on the screen.

Step 6: Stop.

 CH: 4 – Stack 4.25

Example 6: Evaluate the following postfix expression using stack.

753*51^/+32-+

Postfix character
scanned from left to

right

Operation performed Stack

7 7

5 7 5

3 7 5 3

* 5 * 3 = 15 7 15

5 7 15 5

1 7 15 5 1

^ 5 ^ 1 = 5 7 15 5

/ 15 / 5 = 3 7 3

+ 7 + 3 = 10 10

3 10 3

2 10 3 2

- 3 – 2 = 1 10 1

+ 10 + 1 = 11 11

Scan Complete Result = 11

C Program of Postfix Evaluation

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#define Max 100
#define MaxLen 50

char stack[Max];
int top = -1;

void Push(char);
int isFull();
char Pop();
int isEmpty();
int PostfixEvaluation(char []);

 CH: 4 – Stack 4.26

int main()
{

char postfix[MaxLen];
int value;
printf("Enter the postfix expression: ");
gets(postfix);
value = PostfixEvaluation(postfix);
printf("The value of the expression: %d\n", value);
return 0;

}

int PostfixEvaluation(char postfix[])
{

int i, StrLen, a, b;
char symbol;
StrLen = strlen(postfix);
for(i=0; i<StrLen; i++)
{

symbol = postfix[i];

if(symbol >= '0' && symbol <= '9')
{

Push(symbol - '0');
}
else
{

a = Pop();
b = Pop();
switch(symbol)
{

case '+': Push(b + a);
 break;

case '-': Push(b - a);
 break;

case '*': Push(b * a);
 break;

case '/': Push(b / a);
 break;

case '%': Push(b % a);
 break;

case '^': Push(pow(b, a));
 break;

default: printf("Wrong postfix expression.\n");
 break;

}
}

}

 CH: 4 – Stack 4.27

return Pop();
}

void Push(char ch)
{

if(isFull())
{

printf("STACK OVERFLOW\n");
return;

}

stack[++top] = ch;
}

int isFull()
{

if(top == Max - 1)
return 1;

else
return 0;

}

char Pop()
{

if(isEmpty())
{

printf("STACK UNDERFLOW\n");
exit(1);

}

return stack[top--];
}

int isEmpty()
{

if(top == -1)
return 1;

else
return 0;

}

 CH: 4 – Stack 4.28

Now we have reached to a position where we have completed the program of checking the
validity of an infix expression, the program of infix to postfix conversion and the program of
postfix evaluation. We are familiar with the infix expression from very beginning. Therefore
the ultimate goal is to implement a program where an infix expression will be given by the
user and the program will evaluate the infix expression. The intermediate steps of infix to
postfix conversion will remain hidden to the user. Now the sequence of steps to achieve this
goal is given below.

Step 1: Check the validity of the infix expression.

Step 2: If the infix expression is valid, then
 perform infix to postfix conversion
 otherwise
 Print “Invalid infix expression” and go to Step 4.

Step 3: Evaluate the converted postfix expression and display the value on the screen.

Step 4: Stop

According to the above mentioned sequence of steps the three already implemented programs
(validity of infix expression, infix to postfix conversion, evaluation of postfix expression) is
to be assembled to implement the program of infix evaluation which is given below.

C Program of Infix Evaluation

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#define Max 100
#define MaxLen 50

char stack[Max];
int top = -1;

void Push(char);
int isFull();
char Pop();
int isEmpty();
int ExpValidity(char []);
void InfixToPostfix(char [],char []);
int Precedence(char);
int PostfixEvaluation(char []);

 CH: 4 – Stack 4.29

int main()
{

char infix[MaxLen], postfix[MaxLen];
int value;
printf("Enter the Expression: ");
gets(infix);

if(ExpValidity(infix))
{

InfixToPostfix(infix, postfix);
printf("The postfix expression: ");
printf("%s", postfix);
value = PostfixEvaluation(postfix);
printf("\nThe value of the expression: %d", value);

}
else
{

printf("The expression is not valid");
}
printf("\n");
return 0;

}

int ExpValidity(char infix[])
{

int i, StrLen;
char symbol;

StrLen = strlen(infix);

for(i=0; i<StrLen; i++)
{

symbol = infix[i];

switch(symbol)
{

case '(':
case '{':
case '[': Push(symbol);

 break;
case ')': if(isEmpty())

 {
 printf("No. of right brackets is more than no. of left

 brackets.\n");
 return 0;
 }

 CH: 4 – Stack 4.30

 if(Pop() != '(')
 {
 printf("Bracket Mismatch.\n");
 return 0;
 }
 break;

case '}': if(isEmpty())
 {
 printf("No. of right brackets is more than no. of left

 brackets.\n");
 return 0;
 }

 if(Pop() != '{')
 {
 printf("Bracket Mismatch.\n");
 return 0;
 }
 break;

case ']': if(isEmpty())
 {
 printf("No. of right brackets is more than no. of left

 brackets.\n");
 return 0;
 }

 if(Pop() != '[')
 {
 printf("Bracket Mismatch.\n");
 return 0;
 }
 break;

default: break;

}
}

if(isEmpty())
return 1;

else
{

printf("No. of left brackets is more than no. of right brackets.\n");
return 0;

}
}

 CH: 4 – Stack 4.31

void InfixToPostfix(char infix[],char postfix[])
{

int i, j = 0, StrLen;
char symbol, ch;
StrLen = strlen(infix);

for(i=0; i<StrLen; i++)
{

symbol = infix[i];
switch(symbol)
{

case ' ': break;
case '(': Push(symbol);

 break;
case ')': while((ch = Pop()) != '(')

 postfix[j++] = ch;
 break;

case '+':
case '-':
case '*':
case '/':
case '%':
case '^': while(!isEmpty() && Precedence(symbol) <=

 Precedence(stack[top]))
 postfix[j++] = Pop();

 Push(symbol);
 break;

default: if(symbol >= '0' && symbol <= '9')
 {
 postfix[j++] = symbol;
 break;
 }
 else
 {
 printf("Operands of infix expression is not

 numbers.\n");
 exit(1);
 }

}
}

while(!isEmpty())
postfix[j++] = Pop();

postfix[j] = '\0';
}

 CH: 4 – Stack 4.32

int Precedence(char symb)
{

switch(symb)
{

case '^': return 3;
case '*':
case '/':
case '%': return 2;
case '+':
case '-': return 1;
default: return 0;

}
}

int PostfixEvaluation(char postfix[])
{

int i, StrLen, a, b;
char symbol;
StrLen = strlen(postfix);
for(i=0; i<StrLen; i++)
{

symbol = postfix[i];
if(symbol >= '0' && symbol <= '9')
{

Push(symbol - '0');
}
else
{

a = Pop();
b = Pop();
switch(symbol)
{

case '+': Push(b + a);
 break;

case '-': Push(b - a);
 break;

case '*': Push(b * a);
 break;

case '/': Push(b / a);
 break;

case '%': Push(b % a);
 break;

case '^': Push(pow(b, a));
 break;

default: printf("Wrong postfix expression.\n");
 break;

}
}

}
return Pop();

}

 CH: 4 – Stack 4.33

void Push(char ch)
{

if(isFull())
{

printf("STACK OVERFLOW\n");
return;

}

stack[++top] = ch;
}

int isFull()
{

if(top == Max - 1)
return 1;

else
return 0;

}

char Pop()
{

if(isEmpty())
{

printf("STACK UNDERFLOW\n");
exit(1);

}

return stack[top--];
}

int isEmpty()
{

if(top == -1)
return 1;

else
return 0;

}

 CH: 4 – Stack 4.34

3) Prefix Expression – In case of prefix expression, the operator is placed before the
operands. For example – If the infix expression (A + B) is converted to prefix expression,
then it becomes +AB.

Conversion of infix expression to prefix expression – Like the conversion of infix to
postfix, the infix to prefix conversion can be done in two ways – either manually or using
stack.
1. Infix to prefix conversion manually – In manual procedure the expression with highest
precedence operator will be converted first to its equivalent prefix expression. If two or more
operators have the same highest priority, then the leftmost operator will be considered first for
infix to prefix conversion as per the rules of associativity. For better understanding let’s take
some examples.

Example 7: Convert the following infix expression to its corresponding prefix expression.
A – (B / C + (D % E * F) / G) * H

Step Conversion of infix to prefix Remarks

1 A – (B / C + (D % E * F) / G) * H

2 = A – (B / C + ([%DE] * F) / G) * H Self explanatory

3 = A – (B / C + [*%DEF] / G) * H Self explanatory

4 = A – ([/BC] + [*%DEF] / G) * H Self explanatory

5 = A – ([/BC] + [/*%DEFG]) * H Self explanatory

6 = A – [+/BC/*%DEFG] * H Self explanatory

7 = A – [*+/BC/*%DEFGH] Self explanatory

8 = -A*+/BC/*%DEFGH Self explanatory

2. Infix to prefix conversion using stack – In computer the infix to prefix conversion is
done following the steps below.

Step 1: Reverse the infix expression from right to left.

Step 2: Exchange the left and right parenthesis i.e. left parenthesis ‘(‘ will be converted to
right parenthesis ‘)’ and right parenthesis ‘)’ will be converted to left parenthesis ‘(‘.

Step 3: Convert the reversed infix expression to nearly postfix expression. Here the word
“nearly” implies that the operators are popped from the stack until they have the
higher precedence than the current operator.

Step 4: Again reverse the postfix expression to get the ultimate prefix expression.

 CH: 4 – Stack 4.35

Example 8: Convert the following infix expression to its corresponding prefix expression
using stack.

A – (B / C + (D % E * F) / G) * H

Step 1: Reversed infix expression – H *) G /) F * E % D (+ C / B (- A

Step 2: Exchange of parenthesis – H * (G / (F * E % D) + C / B) - A

Step 3: Infix to nearly postfix conversion – The reversed infix expression is given below.

 H * (G / (F * E % D) + C / B) - A

Infix character
scanned

Stack Nearly Postfix expression

H H

* * H

(* (H

G * (HG

/ * (/ HG

(* (/ (HG

F * (/ (HGF

* * (/ (* HGF

E * (/ (* HGFE

% * (/ (* % HGFE

D * (/ (* % HGFED

) * (/ HGFED%*

+ * (+ HGFED%*/

C * (+ HGFED%*/C

/ * (+ / HGFED%*/C

B * (+ / HGFED%*/CB

) * HGFED%*/CB/+

- - HGFED%*/CB/+*

A - HGFED%*/CB/+*A

Scan complete HGFED%*/CB/+*A-

Step 4: Reverse the postfix expression to get the prefix expression.

Therefore the prefix expression: - A*+/BC/*%DEFGH

 CH: 4 – Stack 4.36

Example 9: Convert the following infix expression to its corresponding prefix expression
using stack.

7 + 5 * 3 / 5 ^ 1 + (3 – 2)

Step 1: Reversed infix expression –) 2 – 3 (+ 1 ^ 5 / 3 * 5 + 7

Step 2: Exchange of parenthesis – (2 – 3) + 1 ^ 5 / 3 * 5 + 7

Step 3: Infix to nearly postfix conversion – The reversed infix expression is given below.

 (2 – 3) + 1 ^ 5 / 3 * 5 + 7

Infix character
scanned

Stack Nearly Postfix expression

((

2 (2

- (- 2

3 (- 23

) 23-

+ + 23-

1 + 23-1

^ + ^ 23-1

5 + ^ 23-15

/ + / 23-15^

3 + / 23-15^3

* + / * 23-15^3

5 + / * 23-15^35

+ + + 23-15^35*/

7 + + 23-15^35*/7

Scan complete 23-15^35*/7++

Step 4: Reverse the nearly postfix expression to get the prefix expression.

Therefore the prefix expression: ++7/*53^51-32

 CH: 4 – Stack 4.37

Evaluation of a prefix expression – The evaluation of a prefix expression is similar to
the procedure of postfix evaluation. Only the difference is that every character of the prefix
expression is scanned from right to left. If the character is an operand, it will be pushed on the
stack and if the character is an operator, the operator is applied on the two top elements of the
stack. Let’s take an example to clarify this concept.

Example 10: Evaluate the following prefix expression using stack.

++7/*53^51-32

Prefix character
scanned from right

to left

Operation performed Stack

2 2

3 2 3

- 3 – 2 = 1 1

1 1 1

5 1 1 5

^ 5 ^ 1 = 5 1 5

3 1 5 3

5 1 5 3 5

* 5 * 3 = 15 1 5 15

/ 15 / 5 = 3 1 3

7 1 3 7

+ 7 + 3 = 10 1 10

+ 10 + 1 = 11 11

Scan Complete Result = 11

Chapter 5

Queue

 CH: 5 – Queue 5.1

1) Simple Queue or Queue – A simple queue or queue is a linear data structure in
which the insertion is performed at one end called rear of the queue and deletion is performed
at the other end called front of the queue. That means the insertion of an element into the
queue happens only at the rear end and the removal of the element happens only from the
beginning or front end of the queue. That means, the element which is inserted first at the rear
end, will be deleted first from the front end of the queue. Therefore the queue is called FIFO
(first in first out) data structure. Real life example of the queue is – the queue in front of the
ticket counter in which the person joins the queue first at the rear end will get his ticket first
and will leave the queue first from the front end of the queue. A pictorial view of a queue
with 5 elements is shown in Fig.5.1.

Fig.5.1: A queue of 5 elements with front and rear end

Various types of operations can be performed on a queue, such as – insert, delete, peek etc.
The purpose of a insert operation is to add an element at the rear end of a queue. The delete
operation removes one element from the front end of the queue. The function of peek is to
retrieve the front/ first element of the queue and display it. Like stack, queue can be
implemented either by using array or linked list. In this chapter the above mentioned basic
operations of queue are implemented using array first, then these functions will be realized
using linked list. Before discussing different operations on queue it is important to explain
how a queue can be initialized using array.

Initialization of queue using array – In case of array implementation a queue is
represented by a one dimensional array where each cell of the array is capable to hold one
element. That means the first element of the queue is placed in the cell with index 0, the
second element is placed in the cell with index 1 and so on. It is clear from this discussion
that the side of the array towards the index 0 is treated as front end of the qeue and the
opposite side of the array is considered the rear end of the queue.

If queue is implemented by an array named ‘queue’, then it will be declared globally outside
the main function by the following statement.

Date_type queue[10];

As insertion of an element is possible at the rear end of the queue, we need a variable ‘rear’
which will be used to keep track of the last inserted element of the queue. Similarly to keep
track of the front element of the queue we require another variable ‘front’. Basically here the
variable ‘rear’ will always hold the index value of the last element of the queue and the
variable ‘front’ will always hold the index of the first element of the queue. Now initially the
queue will be empty. The variables ‘front’ and ‘rear’ will be initialized globally with 0 and -1
respectively. When an element is inserted into the queue, the variable ‘rear’ will be
incremented by one and the variable ‘front’ remains unchanged. When the element is
removed from the front end of the queue, the variable ‘front’ will be incremented by one and
the variable ‘rear’ is kept unchanged. That means, insertion operation of a queue is related to
the variable ‘rear’ and the deletion of an element from the queue is related to the variable
‘front’.

20 30 40 50 60Front Rear

 CH: 5 – Queue 5.2

The declaration of the queue using array along with the initialization of the variables ‘front’
and ‘rear’ are given below.

#define Max 5
Data_type queue[Max];
int front = 0;
int rear = -1;

Now the array ‘queue’ along with the variables ‘front’ and ‘rear’ will be utilized by the
different user-defined functions like insert, delete, isEmpty, isFull, peek etc. For this reason
the array ‘queue’ and the variables ‘front’ and ‘rear’ are declared globally outside the main
function to avoid the passing the entire queue array and the ‘front’ and ‘rear’ variables every
time during the use of these functions. The global declaration of the queue is shown below for
clarification.

#include<stdio.h>
#define Max 5

Data_type queue[Max];
int front = 0;
int rear = -1;

int main()
{

.

.

.

.
}

Operation on Queue – Basically there are two operations which are performed on a
queue - 1. Insert and 2. Delete. Except these two operations we have other two functions
related to a queue - 3. isFull and 4. isEmpty. There are more two functions – 5. Peek which is
used to get the front or first element of a queue and 4. Display which is used to print all the
elements of a queue. All these functions are explained one by one below.

1. Insert – In this operation an element is inserted or added to the queue at the rear end. If the
queue is implemented using array, we know that the variable rear is used to store the index
value at the rear end. Initially when the queue is empty, the value of the rear is made -1. As
one element is inserted into the queue the value of rear is incremented by 1 and it becomes
0. If we insert another element, the value of the rear is again incremented by 1. Thus the
value of the variable ‘rear’ is incremented by 1 each time as soon as a new element is
added at the rear end of the queue, but the other variable ‘front’ is made unchanged during
the insertion operation. If the insertion of elements are being continued to the queue, a
time will come when the value of the rear will become (Max – 1), where Max is the
maximum size of the array used to represent a queue. In this situation we can not insert
element further and the queue is said to be full. This condition is known as overflow
condition of the queue. The insertion of elements into a queue is shown in Fig.5.2 using an
array with maximum size 5.

 CH: 5 – Queue 5.3

SL. New element
to be inserted

Before insertion After insertion

1 25

Queue is empty

2 30

3 45

4 52

5 38

Queue is Full

Fig.5.2: Insertion of elements into a queue

It is clear from the above discussion that element can not be inserted when the queue is full.
Therefore before performing insertion operation it is mandatory to check that the queue is full
or not. If it is full, no element will be allowed to insert into the queue and if the queue is not
full, the variable rear will be incremented by 1 first, then the new element should be inserted
or stored into the array of queue.

Front = 0

Rear = -1

0 1 2 3 4Index

25

Front = 0

Rear = 0

0 1 2 3 4Index

25

Front = 0

Rear = 0

0 1 2 3 4Index

25 30

Front = 0

Rear = 1

0 1 2 3 4Index

25 30

Front = 0

Rear = 1

0 1 2 3 4Index

25 30 45

Front = 0

Rear = 2

0 1 2 3 4Index

25 30 45

Front = 0

Rear = 2

0 1 2 3 4Index

25 30 45 52

Front = 0

Rear = 3

0 1 2 3 4Index

25 30 45 52

Front = 0

Rear = 3

0 1 2 3 4Index

25 30 45 52 38

Front = 0

Rear = 4

0 1 2 3 4Index

 CH: 5 – Queue 5.4

Algorithm of insert operation:

Step 1: Start

Step 2: If the queue is Full, then
a) Print ‘QUEUE OVERFLOW’.
b) Go to Step 5.

 [End of If]

Step 3: Set rear = rear + 1

Step 4: Set Queue[rear] = Value

Step 5: Stop

User defined function in C to insert an element into the queue

void insert(int element)
{

if(isFull())
{

printf("QUEUE OVEFLOW\n\n");
return;

}

queue[++rear] = element;
printf("The element has been inserted successfully into the queue\n\n");

}

2. Delete – The delete operation removes the front or first element from the queue. As soon
as the element is removed from the front end of the queue, the variable ‘front’ is
incremented by one to the next index of the array. So initially the front was zero. After the
deletion of the first element the value of front becomes 1 which is the index of the next
element. If another element is deleted from the queue, the front becomes 2. In this way if
the elements of the queue are removed one by one, a time will come when the value of the
front and rear will become equal. When front and rear become equal, the queue will hold
one element which is the last element of the queue. Now if this last element is deleted
again, the queue will be empty and the value of the front will become (rear + 1). In this
condition we can not remove element any more. This empty condition of the queue is
known as underflow condition. Therefore it is essential to check the underflow condition
of the queue before deleting an element. The deletion operation is shown pictorially in
Fig.5.3 for a partially filled queue.

 CH: 5 – Queue 5.5

SL. Before deletion After deletion

1

Deleted element = 25

2

Deleted element = 30

3

Deleted element = 45

4

Deleted element = 52

Front = Rear + 1 → Queue is empty

Fig.5.3: Deletion of elements from a queue

Algorithm of delete operation:

Step 1: Start

Step 2: If the queue is Empty, then
a) Print ‘QUEUE UNDERFLOW’.
b) Go to Step 5.

 [End of If]

Step 3: Set Value = Queue[front]

Step 4: Set front = front + 1

Step 5: Stop

25 30 45 52

Front = 0

Rear = 3

0 1 2 3 4Index

30 45 52

Front = 1

Rear = 3

0 1 2 3 4Index

30 45 52

Front = 1

Rear = 3

0 1 2 3 4Index

45 52

Front = 2

Rear = 3

0 1 2 3 4Index

45 52

Front = 2

Rear = 3

0 1 2 3 4Index
52

Front = 3

Rear = 3

0 1 2 3 4Index

52

Front = 3

Rear = 3

0 1 2 3 4Index

Front = 4

Rear = 3

0 1 2 3 4Index

 CH: 5 – Queue 5.6

User defined function in C to delete an element from the queue

int delete()
{

if(isEmpty())
{

printf("QUEUE UNDERFLOW\n\n");
exit(1);

}

 printf("The element has been deleted successfully from the queue\n\n");
return queue[front++];

}

3. isFull – In case of array implementation of queue, the queue is initialized as an array with
its maximum size. During initialization of a queue the maximum size is defined by a
macro ‘Max’ which is equal to 5. Therefore the queue can hold maximum 5 number of
data. If 6th data is attempted to insert into the queue, this will not be allowed. This situation
is known as “QUEUE OVERFLOW”. The operation “isFull” checks that the queue is
already full or not. If the rear variable is equal to the maximum index value which is (Max
– 1), the “isFull” function returns 1 to indicate that the queue is full. If rear is less than
(Max – 1), it returns 0 to show that the queue is not full. The algorithm for isFull operation
is given below.

Algorithm of isFull operation:

Step 1: Start

Step 2: If rear = Max – 1, then
a) Return 1 (True)

 otherwise
b) Return 0 (False)

 [End of If]

Step 3: Stop

User defined function in C for isFull operation

int isFull()
{

if(rear == Max - 1)
return 1;

else
return 0;

}

 CH: 5 – Queue 5.7

4. isEmpty – If there is no element in the queue, the queue is said to be empty. The isEmpty
operation checks whether the queue is empty or not. In case of array implementation of the
queue, the front variable is initialized to 0. In Fig.5.3 it is being observed that when front
exceeds the value of rear i.e. front = rear + 1, the queue becomes empty. The empty status
of a queue is known as “QUEUE UNDERFLOW”. If (front > rear) or (front = rear + 1), it
implies that the queue is empty and the function isEmpty returns 1, otherwise the function
returns 0.

Algorithm of isEmpty operation:

Step 1: Start

Step 2: If (front = rear + 1) or (front > rear), then
a) Return 1 (True)

 otherwise
b) Return 0 (False)

 [End of If]

Step 3: Stop

User defined function in C for isEmpty operation

int isEmpty()
{

if(front > rear)
return 1;

else
return 0;

}

5. Peek – Peek operation gives the value of the first element of the queue without removing it
from the queue. That means, the peek operation return the first element of the queue if the
queue is not empty. If the queue is empty, it display an error message “QUEUE IS
EMPTY”. Therefore the front variable will not be changed for peek operation.

Algorithm of peek operation:

Step 1: Start

Step 2: If the queue is Empty, then
a) Print ‘QUEUE UNDERFLOW’.
b) Go to Step 4.

 [End of If]

Step 3: Return Queue[front]

Step 4: Stop

 CH: 5 – Queue 5.8

User defined function in C to implement peek operation for a queue

int peek()
{

if(isEmpty())
{

printf("Queue is empty\n\n");
exit(1);

}
return queue[front];

}

6. Display – Display function prints all the elements of a queue. Before printing the elements
it checks the queue is empty or not. If the queue is empty, it prints an error message,
otherwise it prints all the elements of the queue i.e. from first element (queue[front]) to the
last element (queue[rear]). To do this a loop should be executed from i = front to i = rear.
The algorithm of display function is given below.

Algorithm of display function:

Step 1: Start

Step 2: If the queue is Empty, then
a) Print ‘QUEUE UNDERFLOW’.
b) Go to Step 7.

 [End of If]

Step 3: Set i = front

Step 4: Repeat Step 5 to Step 6 while i <= rear

Step 5: Print Queue[i]

Step 6: Set i = i + 1

Step 7: Stop

User defined function in C to display all the elements of a queue

void display()
{

int i;

if(isEmpty())
{

printf("Queue is empty");
}

 CH: 5 – Queue 5.9

else
{

for(i=front; i<=rear; i++)
printf("%d ", queue[i]);

}
}

Now the entire C program to incorporate all the above mentioned functions like insert, delete,
isFull, isEmpty, peek, display are given below.

C program to insert, delete, peek the first element and display all the elements of a
queue

#include<stdio.h>
#include<stdlib.h>
#define Max 100
int queue[Max];
int front = 0;
int rear = -1;
int UnderflowFlag = 0;

void insert(int);
int isFull();
int delete();
int isEmpty();
int peek();
void display();

int main()
{

int choice, element, value, firstelem;

while(1)
{

printf("***\n");
printf("0: Terminate the program\n");
printf("1: Insert an element into the queue\n");
printf("2: Delete an element from the queue\n");
printf("3: Display the first element of the queue\n");
printf("4: Display all the elements of the queue\n");

printf("***\n\n");

 CH: 5 – Queue 5.10

printf("Enter your option: ");
scanf("%d",&choice);
printf("\n");

switch(choice)
{

case 0: exit(1);

case 1: printf("Enter the element to be inserted into the queue: ");
scanf("%d", &element);
insert(element);
break;

case 2: value = delete();
if(!UnderflowFlag)
printf("The element %d has been deleted succeessfully.\n\n", value);
break;

case 3: firstelem = peek();
if(!UnderflowFlag)
printf("The first element of the queue is %d.\n\n", firstelem);
break;

case 4: printf("The elements of the queue:\n\n");
display();
break;

default: printf("Wrong option is selected\n\n");
 break;

}
}
return 0;

}

void insert(int element)
{

if(isFull())
{

printf("QUEUE OVEFLOW\n\n");
return;

}

queue[++rear] = element;
printf("The element has been inserted successfully into the queue\n\n");

}

 CH: 5 – Queue 5.11

int isFull()
{

if(rear == Max -1)
return 1;

else
return 0;

}

int delete()
{

if(isEmpty())
{

printf("QUEUE UNDERFLOW\n\n");
UnderflowFlag = 1;
return 0;

}

UnderflowFlag = 0;
return queue[front++];

}

int isEmpty()
{

if(front > rear)
return 1;

else
return 0;

}

int peek()
{

if(isEmpty())
{

printf("Queue is empty\n\n");
UnderflowFlag = 1;
return 0;

}

UnderflowFlag = 0;
return queue[front];

}

 CH: 5 – Queue 5.12

void display()
{

int i;

if(isEmpty())
{

printf("Queue is empty");
}
else
{

for(i=front; i<=rear; i++)
printf("%d ", queue[i]);

}
printf("\n\n");

}

Note: In the above program a global variable ‘underflowflag’ is used to return the program
sequence to the main function if “QUEUE UNDERFLOW” condition happens. For example
in case of delete function underflow condition may happen any time. In this situation the
remaining part of the delete function should not be executed and the program sequence
should return back to the main function. As the returned data type of the delete function is int,
we can not use ‘return’ to exit from the delete function. We have to use either ‘exit(1)’ or
‘return 0’. But ‘exit(1)’ terminates the program completely which is not desired at all. On the
other hand ‘return 0’ returns zero to the main, which will be considered as the deleted
element, although no element has been deleted due to the underflow state of the queue. To
refrain from this consequence, underflowflag is used in the main. If underflowflag = 1, it will
show “Queue is empty” and if underflowflag = 0, then the deleted element will be stored into
a variable ‘value’ and will be displayed.

Drawback of queue – In array implementation of a queue if elements are inserted
continuously, the queue will be full ultimately when the value of rear will reach to (Max – 1).
In this situation if some elements are deleted from the queue, some empty cells will be
generated starting from the front end of the queue. Consequently this queue does not remain
empty, it has some spaces for storing elements once again. In spite of some existing vacant
cells in the queue new element can not be inserted any more as the rear variable has reached
to the maximum index of the array. Even if the queue is made completely empty by
eliminating all the elements, it is not possible to add any element further. Therefore these
spaces inside the queue remains unused. This situation is demonstrated in Fig.5.4 for better
understanding.

 CH: 5 – Queue 5.13

SL. New element
to be inserted

Before insertion After insertion

1 25

Queue is empty

2 30

3 45

4 52

5 38

Queue is Full

Fig.5.4: Insertion of elements into a queue

Front = 0

Rear = -1

0 1 2 3 4Index

25

Front = 0

Rear = 0

0 1 2 3 4Index

25

Front = 0

Rear = 0

0 1 2 3 4Index

25 30

Front = 0

Rear = 1

0 1 2 3 4Index

25 30

Front = 0

Rear = 1

0 1 2 3 4Index

25 30 45

Front = 0

Rear = 2

0 1 2 3 4Index

25 30 45

Front = 0

Rear = 2

0 1 2 3 4Index

25 30 45 52

Front = 0

Rear = 3

0 1 2 3 4Index

25 30 45 52

Front = 0

Rear = 3

0 1 2 3 4Index

25 30 45 52 38

Front = 0

Rear = 4

0 1 2 3 4Index

 CH: 5 – Queue 5.14

SL. Before deletion After deletion

1

Deleted element = 25

2

Deleted element = 30

3

Deleted element = 45

In spite of these 3 empty cells, no
element can be inserted further

Fig.5.4: Deletion of elements from the queue to create empty spaces

To resolve this limitation of queue, circular queue is introduced. In circular queue the unused
empty cells are reused by the newly inserted elements. The detail discussion of circular queue
is covered in the next section.

Other types of Queue – There are other various types of queue except simple queue as
discussed above.

1) Circular Queue 2) Deque (Double ended queue) 3) Priority Queue

25 30 45 52 38

Front = 0

Rear = 4

0 1 2 3 4Index

30 45 52 38

Front = 1

Rear = 4

0 1 2 3 4Index

Empty
space

30 45 52 38

Front = 1

Rear = 4

0 1 2 3 4Index

Empty
space

45 52 38

Front = 2

Rear = 4

0 1 2 3 4Index

Empty
spaces

45 52 38

Front = 2

Rear = 4

0 1 2 3 4Index

Empty
spaces

52 38

Front = 3

Rear = 4

0 1 2 3 4Index

Empty
spaces

 CH: 5 – Queue 5.15

2) Circular Queue – A circular queue is a special type of queue where the first index
comes just after the last index. This implies that if the array size is Max, then the next index
of the index = Max – 1 is 0 i.e. if index = Max – 1, then (index + 1) = 0, not Max. This
orientation forms a circular structure of a queue. Therefore a circular queue is visualized as
shown in Fig.5.5.

Fig.5.5: Array implementation of circular queue

In the above figure a circular queue has been realized using an array of 8 elements (Max = 8).
If we move in clockwise direction, index 0 comes after index 7 (Max – 1), whereas index 0 is
the first index and index 7 is the last index. If rear = 7 and the circular queue is not full, then
rear will be changed to 0 to insert a new element into the queue. Similarly if front = 7 and the
circular queue is not empty, the front will be modified to 0 after the deletion of an element. It
is evident that to insert an element into the circular queue the queue is full or not should be
checked first. Similarly “a circular queue is empty or not” – this should be verified before the
deletion of an element. Therefore it is important to develop isFull/ isEmpty function before
insertion/ deletion of an element.

isFull and isEmpty status of a circular queue – These two functions checks the current
status of a circular queue i.e. isFull function checks the overflow condition of a queue and
isEmpty function checks the underflow condition of a queue – isFull function returns true if
the circular queue is full and isEmpty function returns true if the circular queue is empty.
Now we have to develop two different conditions for checking these two status (either empty
or full) of a circular queue.

isEmpty conditions for a circular queue: There are three conditions for which the circular
queue will be considered as empty.

Condition 1 for empty: Initially when he circular queue is empty, the values of front and rear
are 0 and -1 respectively. We know front and rear hold the index of the circular queue array.
As -1 is an invalid index for an array in C, the rear = -1 is not a valid index initially.
Therefore rear = -1 is one of the conditions for which the queue will be empty shown in
Fig.5.6.

 CH: 5 – Queue 5.16

Fig.5.6: Empty circular queue with front = 0 and rear = -1

Condition 2 for empty: Suppose a circular queue is full completely with front = 0 and rear =
Max – 1. If all the elements are started to remove by increasing the front by 1 and keeping the
rear unchanged, a time will come when front will become (Max – 1) and rear will be also
(Max – 1). This situation implies that the circular queue has only one element. If this last
element is also deleted, the front will become 0 once again according to the protocol of a
circular queue. Thus the second condition for a circular queue of being empty is front = 0 and
rear = Max – 1. This situation is demonstrated in the following figure for clarification.

1.

2.

3.

 CH: 5 – Queue 5.17

4.

5.

F ig.5.7: Sequence of deletion for condition2

Condition 3 for empty: Suppose a circular queue is full completely with front = rear + 1
assuming front ≠ 0 and rear ≠ Max – 1. In this situation if the queue is made empty by
deleting all the elements one by one, the front will be (rear + 1) once again. Therefore the
third condition for the circular queue of becoming empty is front = rear + 1. Condition 3 has
been explained in Fig.5.8 below.

1.

2.

 CH: 5 – Queue 5.18

3.

4.

5.

F ig.5. 8 : Sequence of deletion for condition 3

isFull conditions for a circular queue: The two conditions for which a circular queue will be
treated as full are given below.

Condition 1 for full: Initially the queue is empty with front = 0 and rear = -1. If the elements
are added one by one by increasing the value of rear and keeping the value of front
unchanged, the queue will be filled up by elements when the front and the rear will become 0
and (Max – 1) respectively. So the first condition of circular queue to be full is front = 0 and
rear = Max – 1. This situation is shown in Fig.5.9 below.

1.

 CH: 5 – Queue 5.19

2.

3.

4.

5.

F ig.5.9: Sequence of insertion for condition 1

Condition 2 for full: Suppose a circular queue is holding a single element with front = rear
assuming front = rear ≠ 0. In this situation if the queue is made full by inserting elements one
by one, the rear will reach to the index just before the index of front i.e. front = rear + 1
which is the another condition for full circular queue. This situation is also demonstrated step
by step in Fig.5.10 below.

 CH: 5 – Queue 5.20

1.

2.

3.

4.

F ig.5. 10 : Sequence of insertion for condition 2

 CH: 5 – Queue 5.21

The above mentioned three conditions for empty circular queue and two conditions for full
circular queue are summarized in the following table.

Conditions for empty circular queue Conditions for full circular queue

Condition 1→If rear = -1
 Circular queue is empty.

Condition 2→If front = 0 and rear = Max - 1
 Circular queue is empty.

Condition 3→If front = rear + 1
 Circular queue is empty.

Condition 1→If front = 0 and rear = Max - 1
 Circular queue is full.

Condition 2→If front = rear + 1
 Circular queue is full.

It is being seen from the above table that condition 2 for empty queue clashes with condition
1 for full queue, similarly condition 3 for empty queue is same with condition 2 for full
queue. Therefore using these conditions we can not differentiate empty circular queue and
full circular queue. So we have to do something so that we can get different conditions for
empty queue and full queue. To resolve this problem the empty condition of a circular queue
is made condition 1 only i.e. (rear = -1). But the question is “How is this done ? “.

Before making the circular queue empty totally, a situation must occur when the queue should
have the last element to be deleted. In this position we have front = rear which implies that
the queue is going to be empty next. Hence if the condition “front = rear” is satisfied, the
values of front and rear are made 0 and -1 respectively to restore the circular queue in its
initial empty state. The above mentioned condition checking is given in C code below.

If (front == rear)
{

front = 0;
rear = -1;

}

The above codes are incorporated inside the delete user-defined function of the circular
queue. Therefore it is being observed that the conditions for empty circular queue have been
reduced to a single condition. Now the condition “rear = -1” for empty queue also satisfies
the condition of full circular queue “front = rear + 1” as we know when rear is -1, front will
be 0 obviously. To resolve this issue the second condition of full circular queue is modified as
follows.

Condition 2 for full circular queue: If rear ≠ -1 and front = rear + 1, then circular queue is
full.

 CH: 5 – Queue 5.22

Finally all the conditions of a circular queue of being empty and full are written in the
following table for clarification.

Final Conditions for empty circular queue Final Conditions for full circular queue

Condition 1→If rear = -1
 Circular queue is empty.

Condition 1→If front = 0 and rear = Max - 1
 Circular queue is full.

Condition 2→If rear ≠ -1 and front = rear + 1
 Circular queue is full.

Algorithm of isFull operation:

Step 1: Start

Step 2: If (front = 0 and rear = Max – 1) or (rear ≠ -1 and front = rear + 1), then
a) Return 1 (True)

 otherwise
b) Return 0 (False)

 [End of If]

Step 3: Stop

User defined function in C for isFull operation

int isFull()
{

if((front == 0 && rear == Max -1) || (rear != -1 && front == rear + 1))
return 1;

else
return 0;

}

Algorithm of isEmpty operation:

Step 1: Start

Step 2: If rear = -1, then
a) Return 1 (True)

 otherwise
b) Return 0 (False)

 [End of If]

Step 3: Stop

 CH: 5 – Queue 5.23

User defined function in C for isEmpty operation

int isEmpty()
{

if(rear == -1)
return 1;

else
return 0;

}

1. Insert – In this operation an element is inserted or added to the circular queue at the rear
end. Initially when the queue is empty, the value of the rear is made -1 and front is 0. As
one element is inserted into the queue the value of rear is incremented by 1 and it becomes
0. If we insert another element, the value of the rear is again incremented by 1. Thus the
value of the variable ‘rear’ is incremented by 1 each time as soon as a new element is
added at the rear end of the circular queue, but the other variable ‘front’ is made
unchanged during the insertion operation. That means, the insertion process in case of
circular queue is almost similar to the insertion process of normal queue except a
particular situation. This situation happens when rear reaches to the value (Max – 1). If
another element is attempted to insert into the circular queue, the rear is made 0 after (Max
– 1). The algorithm of the insertion operation into a circular queue is given below.

Algorithm of insert operation:

Step 1: Start

Step 2: If the circular queue is full, then
a) Print ‘CIRCULAR QUEUE OVERFLOW’
b) Go to Step 5

 [End of If]

Step 3: If rear = Max – 1, then
a) Set rear = 0

 otherwise
b) Set rear = rear + 1

 [End of If]

Step 4: Set Circular_Queue[rear] = Element to be inserted

Step 5: Stop

 CH: 5 – Queue 5.24

User defined function in C for insert operation

void insert(int element)
{

if(isFull())
{

printf("CIRCULAR QUEUE OVEFLOW\n\n");
return;

}

if(rear == Max - 1)
rear = 0;

else
rear++;

cqueue[rear] = element;
printf("The element has been inserted successfully into the circular queue\n\n");

}

2. Delete – The delete operation removes the front or first element from the circular queue.
As soon as the element is removed from the front end of the circular queue, the variable
‘front’ is changed in the following three ways.

1) When the circular queue has only one element left i.e. when front is equal to rear, set
front to zero and rear to -1 for restoring the initial status of the circular queue. This is done
to satisfy the condition of empty state of the circular queue as already mentioned in the
previous section.

2) When front reaches to the last index (Max – 1), make front to be zero once again as it is
a circular queue.

3) If the above mentioned two situations have not arisen, the front is incremented by one
to point the next index of the circular queue.

Before modifying the variable front, the current front value of the circular queue is stored
in a variable temporarily and this value is returned at the later stage.

Algorithm of delete operation:

Step 1: Start

Step 2: If the circular queue is empty, then
a) Print ‘CIRCULAR QUEUE UNDERFLOW’
b) Go to Step 6

 [End of If]

Step 3: Set Data = Circular_Queue[front]

 CH: 5 – Queue 5.25

Step 4: If front = rear, then
a) Set front = 0 and Set rear = -1

 otherwise
b) If front = Max – 1, then

i) Set front = 0
otherwise
ii) Set front = front + 1

 [End of If]

Step 5: Return Data

Step 6: Stop

User defined function in C for delete operation

int delete()
{

int data;
if(isEmpty())
{

printf("CIRCULAR QUEUE UNDERFLOW\n\n");
exit(1);

}

data = cqueue[front];

if(front == rear)
{

front = 0;
rear = -1;

}
else if(front == Max - 1)

front = 0;
else

front++;

return data;
}

3. Peek – Peek operation gives the value of the first element of the circular queue without
removing it from the queue. That means, the peek operation return the first element of the
circular queue if the queue is not empty. If the queue is empty, it display an error message
“QUEUE IS EMPTY”. Therefore the front variable will not be changed for peek
operation.

 CH: 5 – Queue 5.26

Algorithm of peek operation:

Step 1: Start

Step 2: If the circular queue is Empty, then
a) Print ‘CIRCULAR QUEUE UNDERFLOW’.
b) Go to Step 4.

 [End of If]

Step 3: Return Circular_Queue[front]

Step 4: Stop

User defined function in C to implement peek operation for a circular queue

int peek()
{

if(isEmpty())
{

printf("Circular Queue is empty\n\n");
exit(1);

}

return cqueue[front];
}

4. Display – Display function prints all the elements of a circular queue. Before printing the
elements it checks the queue is empty or not. If the queue is empty, it prints an error
message, otherwise it prints all the elements of the queue i.e. from first element
(queue[front]) to the last element (queue[rear]). To do this a loop should be executed from
i = front to i = rear. The algorithm of display function is given below.

Algorithm of display function:

Step 1: Start

Step 2: If the circular queue is Empty, then
a) Print ‘CIRCULAR QUEUE UNDERFLOW’.
b) Go to Step 4.

 [End of If]

Step 3: If front ≤ rear, then
a) Set i = front
i) Repeat ii) to iii) while i ≤ rear
ii) Print Circular_Queue[i]
iii) Set i = i + 1

 [End of Loop]

 CH: 5 – Queue 5.27

 otherwise
b) Set i = front
i) Repeat ii) to iii) while i < Max
ii) Print Circular_Queue[i]
iii) Set i = i + 1

 [End of Loop]

c) Set i = 0
i) Repeat ii) to iii) while i ≤ rear
ii) Print Circular_Queue[i]
iii) Set i = i + 1

 [End of Loop]
 [End of If-Else at Step 3]

Step 4: Stop

User defined function in C to display all the elements of a circular queue

void display()
{

int i;

if(isEmpty())
{

printf("Circular Queue is empty");
}
else if(front <= rear)
{
for(i=front; i<=rear; i++)

printf("%d ", cqueue[i]);
}
else
{

for(i=front; i<Max; i++)
printf("%d ", cqueue[i]);

for(i=0; i<=rear; i++)
printf("%d ", cqueue[i]);

}
}

Now the entire C program to incorporate all the above mentioned functions like insert, delete,
isFull, isEmpty, peek, display are given below.

 CH: 5 – Queue 5.28

C program to insert, delete, peek the first element and display all the elements of a
circular queue.

#include<stdio.h>
#include<stdlib.h>
#define Max 10

int cqueue[Max];
int front = 0;
int rear = -1;
int UnderflowFlag = 0;

void insert(int);
int isFull();
int delete();
int isEmpty();
int peek();
void display();

int main()
{

int choice, element, value, firstelem;

while(1)
{

printf("***\n");
printf("0: Terminate the program\n");
printf("1: Insert an element into the circular queue\n");
printf("2: Delete an element from the circular queue\n");
printf("3: Display the first element of the circular queue\n");
printf("4: Display all the elements of the circular queue\n");

printf("***\n\n");
printf("Enter your option: ");
scanf("%d",&choice);
printf("\n");

switch(choice)
{

case 0: exit(1);

case 1: printf("Enter the element to be inserted into the circular queue: ");
scanf("%d", &element);
insert(element);
break;

 CH: 5 – Queue 5.29

case 2: value = delete();
if(!UnderflowFlag)
printf("The element %d has been deleted succeessfully.\n\n", value);
break;

case 3: firstelem = peek();
if(!UnderflowFlag)
printf("The first element of the circular queue is %d.\n\n",

 firstelem);
break;

case 4: printf("The elements of the circular queue:\n\n");
display();
break;

default: printf("Wrong option is selected\n\n");
 break;

}
}
return 0;

}

void insert(int element)
{

if(isFull())
{

printf("CIRCULAR QUEUE OVEFLOW\n\n");
return;

}
if(rear == Max - 1)

rear = 0;
else

rear++;

cqueue[rear] = element;
printf("The element has been inserted successfully into the circular queue\n\n");

}

int isFull()
{

if((front == 0 && rear == Max -1) || (rear != -1 && front == rear + 1))
return 1;

else
return 0;

}

 CH: 5 – Queue 5.30

int delete()
{

int data;
if(isEmpty())
{

printf("CIRCULAR QUEUE UNDERFLOW\n\n");
UnderflowFlag = 1;
return 0;

}
UnderflowFlag = 0;
data = cqueue[front];

if(front == rear)
{

front = 0;
rear = -1;

}
else if(front == Max - 1)

front = 0;
else

front++;

return data;
}

int isEmpty()
{

if(rear == -1)
return 1;

else
return 0;

}

int peek()
{

if(isEmpty())
{

printf("Circular Queue is empty\n\n");
UnderflowFlag = 1;
return 0;

}

UnderflowFlag = 0;
return cqueue[front];

}

 CH: 5 – Queue 5.31

void display()
{

int i;

if(isEmpty())
{

printf("Circular Queue is empty");
}
else if(front <= rear)
{
for(i=front; i<=rear; i++)

printf("%d ", cqueue[i]);
}
else
{

for(i=front; i<Max; i++)
printf("%d ", cqueue[i]);

for(i=0; i<=rear; i++)
printf("%d ", cqueue[i]);

}

printf("\n\n");
}

3) Double Ended Queue or Deque – Double ended queue or Deque is a special type
of queue in which insertion and deletion can be performed at either end of the queue. That
means we can insert and delete an element at the front end as well as at the rear end of the
queue. Therefore there are basically four operations that can be performed in deque – 1. insert
front, 2. insert rear, 3. delete front and 4. delete rear which will be discussed in details in the
next section. A deque is basically implemented using circular queue. Therefore it is essential
to understand the circular queue before the discussion of deque.

1. Insert front – In this operation an element is inserted or added at the front of the deque.
Initially when the queue is empty, the value of the rear is made -1 and front is 0. As the
insertion is done at the front of the deque, the variable front will be changed only except
during the insertion of the first element into the empty deque. When the first element is
inserted at the front of the empty deque, the value of rear is incremented by 1 and it becomes
0 keeping front to be 0. If the queue is not empty, two situations may arise during the
insertion at the front end of the queue.

In one situation when an element is going to be inserted at the front of the non-empty deque
with front = 0 and rear ≠ Max - 1, the front will be made (Max – 1) keeping rear unchanged
to utilize the free space at the end the queue. As a consequence the new element will be
placed at the last index (Max – 1) of the queue.

 CH: 5 – Queue 5.32

In the other situation when an element is going to be inserted at the front of the non-empty
deque with front ≠ 0, the front will be decremented by 1 keeping the variable rear unaltered.
As a result the new element will be added at the index just before the index of the front. The
algorithm of the insert operation into a double ended queue is given below.

Algorithm of insert front operation:

Step 1: Start

Step 2: If the deque is full, then
a) Print ‘DEQUE OVERFLOW’
b) Go to Step 5

 [End of If]

Step 3: If the deque is empty, then rear = Max – 1, then
a) Set rear = 0

 otherwise
b) If front = 0, then

1. Set front = Max – 1
otherwise
2. Set front = front – 1

[End of If (b)]
 [End of If (Step 3)]

Step 4: Set Deque[front] = Element to be inserted

Step 5: Stop

User defined function in C for insert operation at the front end

void insertfront(int element)
{

if(isFull())
{

printf("DEQUE OVEFLOW\n\n");
return;

}
else if(isEmpty())

rear = 0;
else if(front == 0)

front = Max - 1;
else

front--;

deque[front] = element;
printf("The element has been inserted successfully at the front of the Deque\n\n");

}

 CH: 5 – Queue 5.33

2. Insert rear – In this operation an element is inserted or added at the rear end of the deque.
Initially when the queue is empty, the value of the rear is made -1 and front is 0. As the
insertion is done at the rear of the deque, the variable rear will be changed only except during
the insertion of the first element into the empty deque. When the first element is inserted at
the rear of the empty deque, the value of rear is incremented by 1 and it becomes 0 keeping
front to be 0. If the queue is not empty, two situations may arise during the insertion at the
rear end.

In one situation when an element is going to be inserted at the rear of the non-empty deque
with front ≠ 0 and rear = Max - 1, the rear will be made 0 keeping the front unchanged to
utilize the free space at the starting the queue. As a consequence the new element will be
placed at the index 0 of the deque.

In the other situation when an element is going to be inserted at the rear of the non-empty
deque with rear ≠ Max – 1, the rear will be incremented by 1 keeping the variable front
unaltered. As a result the new element will be added at the index just after the index of the
rear. The algorithm of the insert operation into a double ended queue is given below.

Algorithm of insert rear operation:

Step 1: Start

Step 2: If the deque is full, then
a) Print ‘DEQUE OVERFLOW’
b) Go to Step 5

 [End of If]

Step 3: If rear = Max – 1, then
a) Set rear = 0

otherwise
b) Set rear = rear + 1

 [End of If (Step 3)]

Step 4: Set Deque[rear] = Element to be inserted

Step 5: Stop

User defined function in C for insert operation at the rear end

void insertrear(int element)
{

if(isFull())
{

printf("DEQUE OVEFLOW\n\n");
return;

}
else if(rear == Max - 1)

rear = 0;

 CH: 5 – Queue 5.34

else
rear++;

deque[rear] = element;
printf("The element has been inserted successfully at the rear of the Deque\n\n");

}

3. Delete front – In this operation the element at the front end of a deque will be removed.
Here three cases may occur during the deletion from the deque.

Case 1: If the queue has one element left i.e. front = rear before the deletion, it will be empty
after the deletion of the last element. To maintain the condition of empty deque the front and
the rear are assigned with 0 and -1 respectively.

Case 2: If the front points to the last index (Max – 1) of the array, the front will be made 0
keeping the value of rear unchanged.

Case 3: If the above mentioned two cases are not satisfied i.e. front ≠ rear and front ≠ Max –
1, the front will be incremented by one to point the next index.

The algorithm of the delete operation from a double ended queue is given below.

Algorithm of delete front operation:

Step 1: Start

Step 2: If the deque is empty, then
a) Print ‘DEQUE UNDERFLOW’
b) Go to Step 6

 [End of If]

Step 3: Set Data = Deque[front]

Step 4: If the deque has one element i.e. front = rear, then
a) Set front = 0 and Set rear = -1

 otherwise
b) If front = Max – 1, then

1. Set front = 0
otherwise
2. Set front = front + 1

[End of If (b)]
 [End of If (Step 4)]

Step 5: Return Data

Step 6: Stop

 CH: 5 – Queue 5.35

User defined function in C for delete operation at the front end

int deletefront()
{

int data;
if(isEmpty())
{

printf("DEQUE UNDERFLOW\n\n");
UnderflowFlag = 1;
return 0;

}
UnderflowFlag = 0;
data = deque[front];

if(front == rear)
{

front = 0;
rear = -1;

}
else if(front == Max - 1)

front = 0;
else

front++;
return data;

}

4. Delete rear – In this case the element at the rear end of a deque will be removed. Here
three cases may occur during the deletion from the deque like the deletion of element at the
front end.

Case 1: If the queue has one element left i.e. front = rear before the deletion, it will be empty
after the deletion of the that element. To maintain the condition of empty deque the front and
the rear are assigned with 0 and -1 respectively.

Case 2: If the rear points to the first index of the array i.e. rear = 0, the rear will be made
(Max - 1) keeping the value of front unchanged.

Case 3: If the above mentioned two cases are not fulfilled i.e. front ≠ rear and rear ≠ 0, the
rear will be decremented by one to point the previous index.

The algorithm of the delete operation from a double ended queue is given below.

Algorithm of delete rear operation:

Step 1: Start

Step 2: If the deque is empty, then
a) Print ‘DEQUE UNDERFLOW’
b) Go to Step 6

 [End of If]

 CH: 5 – Queue 5.36

Step 3: Set Data = Deque[rear]

Step 4: If the deque has one element i.e. front = rear, then
a) Set front = 0 and Set rear = -1

 otherwise
b) If rear = 0, then

1. Set rear = Max – 1
otherwise
2. Set rear = rear – 1

[End of If (b)]
 [End of If (Step 4)]

Step 5: Return Data

Step 6: Stop

User defined function in C for delete operation at the rear end

int deleterear()
{

int data;
if(isEmpty())
{

printf("DEQUE UNDERFLOW\n\n");
UnderflowFlag = 1;
return 0;

}

UnderflowFlag = 0;
data = deque[rear];

if(front == rear)
{

front = 0;
rear = -1;

}
else if(rear == 0)

rear = Max - 1;
else

rear--;

return data;
}

 CH: 5 – Queue 5.37

5. isFull and isEmpty – The protocols of these functions are identical to the isFull and
isEmpty operation of a circular queue. That’s why there is no need to explain them.

Algorithm of isFull operation:

Step 1: Start

Step 2: If (front = 0 and rear = Max – 1) or (rear ≠ -1 and front = rear + 1), then
a) Return 1 (True)

 otherwise
b) Return 0 (False)

 [End of If]

Step 3: Stop

User defined function in C for isFull operation

int isFull()
{

if((front == 0 && rear == Max -1) || (rear != -1 && front == rear + 1))
return 1;

else
return 0;

}

Algorithm of isEmpty operation:

Step 1: Start

Step 2: If rear = -1, then
a) Return 1 (True)

 otherwise
b) Return 0 (False)

 [End of If]

Step 3: Stop

User defined function in C for isEmpty operation

int isEmpty()
{

if(rear == -1)
return 1;

else
return 0;

}

 CH: 5 – Queue 5.38

6. Peek – The algorithm of peek operation is same as the algorithm of peek function in case
of a circular queue.

Algorithm of peek operation:

Step 1: Start

Step 2: If the deque is Empty, then
a) Print ‘DEQUE UNDERFLOW’.
b) Go to Step 4.

 [End of If]

Step 3: Return Deque[front]

Step 4: Stop

User defined function in C to implement peek operation for a deque

int peek()
{

if(isEmpty())
{

printf("Deque is empty\n\n");
UnderflowFlag = 1;
return 0;

}

UnderflowFlag = 0;
return deque[front];

}

7. Display – This user defined function prints all the elements in a deque. The algorithm of
display operation is same as the algorithm of display operation in case of a circular queue.
Therefore the algorithm and C code in this case are self-explanatory.

Algorithm of display function:

Step 1: Start

Step 2: If the Deque is Empty, then
a) Print ‘DEQUE UNDERFLOW’.
b) Go to Step 4.

 [End of If]

Step 3: If front ≤ rear, then
a) Set i = front
i) Repeat ii) to iii) while i ≤ rear
ii) Print Deque[i]

 CH: 5 – Queue 5.39

iii) Set i = i + 1
 [End of Loop]
 otherwise

b) Set i = front
i) Repeat ii) to iii) while i < Max
ii) Print Deque[i]
iii) Set i = i + 1

 [End of Loop]

c) Set i = 0
i) Repeat ii) to iii) while i ≤ rear
ii) Print Deque[i]
iii) Set i = i + 1

 [End of Loop]
 [End of If-Else at Step 3]

Step 4: Stop

User defined function in C to display all the elements of a deque

void display()
{

int i;

if(isEmpty())
{

printf("Deque is empty");
}
else if(front <= rear)
{
for(i=front; i<=rear; i++)

printf("%d ", deque[i]);
}
else
{

for(i=front; i<Max; i++)
printf("%d ", deque[i]);

for(i=0; i<=rear; i++)
printf("%d ", deque[i]);

}

printf("\n\n");
}

 CH: 5 – Queue 5.40

The entire C program of a deque with its various operations is given below.

C program to insert front, insert rear, delete front, delete rear, peek the first element and
display all the elements of a double ended queue.

#include<stdio.h>
#include<stdlib.h>
#define Max 5

int deque[Max];
int front = 0;
int rear = -1;
int UnderflowFlag = 0;

void insertfront(int);
void insertrear(int);
int isFull();
int deletefront();
int deleterear();
int isEmpty();
int peek();
void display();

int main()
{

int choice, element, value, firstelem;

while(1)
{
printf("***\n");

printf("0: Terminate the program\n");
printf("1: Insert an element at the front of the Deque\n");
printf("2: Insert an element at the rear of the Deque\n");
printf("3: Delete an element from the front of the Deque\n");
printf("4: Delete an element from the rear of the Deque\n");
printf("5: Display the first element of the Deque\n");
printf("6: Display all the elements of the Deque\n");

printf("***\n\n");

printf("Enter your option: ");
scanf("%d",&choice);
printf("\n");

switch(choice)
{

case 0: exit(1);

case 1: printf("Enter the element to be inserted at the front of the Deque: ");
scanf("%d", &element);
insertfront(element);
break;

 CH: 5 – Queue 5.41

case 2: printf("Enter the element to be inserted at the rear of the Deque: ");
scanf("%d", &element);
insertrear(element);
break;

case 3: value = deletefront();
if(!UnderflowFlag)

printf("The element %d has been deleted succeessfully from
 the front of the Deque.\n\n", value);

break;

case 4: value = deleterear();
if(!UnderflowFlag)

printf("The element %d has been deleted succeessfully from
 the rear of the Deque.\n\n", value);

break;

case 5: firstelem = peek();
if(!UnderflowFlag)
printf("The first element of the Deque is %d.\n\n", firstelem);
break;

case 6: printf("The elements of the Deque:\n\n");
display();
break;

default: printf("Wrong option is selected\n\n");
 break;

}

}

return 0;
}

void insertfront(int element)
{

if(isFull())
{

printf("DEQUE OVEFLOW\n\n");
return;

}
else if(isEmpty())

rear = 0;
else if(front == 0)

front = Max - 1;
else

front--;

deque[front] = element;
printf("The element has been inserted successfully at the front of the Deque\n\n");

}

 CH: 5 – Queue 5.42

void insertrear(int element)
{

if(isFull())
{

printf("DEQUE OVEFLOW\n\n");
return;

}
else if(rear == Max - 1)

rear = 0;
else

rear++;

deque[rear] = element;
printf("The element has been inserted successfully at the rear of the Deque\n\n");

}

int isFull()
{

if((front == 0 && rear == Max -1) || (rear != -1 && front == rear + 1))
return 1;

else
return 0;

}

int deletefront()
{

int data;
if(isEmpty())
{

printf("DEQUE UNDERFLOW\n\n");
UnderflowFlag = 1;
return 0;

}

UnderflowFlag = 0;
data = deque[front];

if(front == rear)
{

front = 0;
rear = -1;

}
else if(front == Max - 1)

front = 0;
else

front++;

return data;
}

 CH: 5 – Queue 5.43

int deleterear()
{

int data;
if(isEmpty())
{

printf("DEQUE UNDERFLOW\n\n");
UnderflowFlag = 1;
return 0;

}

UnderflowFlag = 0;
data = deque[rear];

if(front == rear)
{

front = 0;
rear = -1;

}
else if(rear == 0)

rear = Max - 1;
else

rear--;

return data;
}

int isEmpty()
{

if(rear == -1)
return 1;

else
return 0;

}

int peek()
{

if(isEmpty())
{

printf("Deque is empty\n\n");
UnderflowFlag = 1;
return 0;

}

UnderflowFlag = 0;
return deque[front];

}

 CH: 5 – Queue 5.44

void display()
{

int i;

if(isEmpty())
{

printf("Deque is empty");
}
else if(front <= rear)
{
for(i=front; i<=rear; i++)

printf("%d ", deque[i]);
}
else
{

for(i=front; i<Max; i++)
printf("%d ", deque[i]);

for(i=0; i<=rear; i++)
printf("%d ", deque[i]);

}

printf("\n\n");
}

Types of deque – There are two types of deque – 1. Input restricted deque and 2. Output
restricted deque.

1. Input restricted deque – In this deque insertion can be done only at one of the ends
whereas deletion can be done at both ends of the deque.

2. Output restricted deque – In this deque deletion can be done only at one of the ends
whereas insertion can be done at both ends of the deque.

Chapter 6

Linked List

 CH 6: Linked List 6.1

In Chapter 1 it has been discussed that an array is a linear data structure in which the
elements are stored in consecutive memory locations. It is also mentioned that an array has
some crucial limitations. An array is declared with fixed size which restricts the number of
elements that an array can store. In some situations the number of elements to be dealt with
can not be known in advance. In those cases the use of an array may fail incidentally. To
overcome those situations a linked list is the solution where the elements are allocated
dynamically in the memory. Due to this feature a linked list is capable to deal with enormous
number of elements endlessly unless the memory space is exhausted.

A linked list is a very flexible, dynamic, linear data structure in which elements (called
nodes) are connected to each other in a sequential manner. Every node of a linked list has two
parts – 1) Data part and 2) Link part. The data part consists of one or more number of data
with different types like int, float, char etc. The link part consists the address of another node
which may be the predecessor node or the successor node. Hence the link part is basically a
pointer which points to another node of the linked list. Thus the connection between the two
nodes is established with the help of this link part and the consecutive nodes of a linked list
are connected in a sequential manner. As the nodes of a linked list is allocated dynamically
inside the memory, a linked list does not store its elements in consecutive memory locations.
A pictorial view of a linked list is shown in Fig.6.1 for better understanding.

Fig.6.1: Pictorial view of a linked list

In the above figure a linked list is shown with three nodes with starting addresses 1000, 5500
and 2000 respectively. So it is evident that the nodes have occupied the memory locations
randomly i.e. not consecutively. Moreover it is also being seen that the data part of each node
is holding one integer value, one floating point value and one character type value. The link
part of each node stores the starting address of next node to establish the connection. The link
part of first node holds the starting address (5500) of the second node, the link of the second
node holds the starting address (2000) of the third node and so on. The link part of the last
node is not holding any address. That’s why it is assigned to NULL to indicate the end of the
linked list. The starting address of the first node is stored in a pointer called head pointer. The
entire linked list can be accessed by only the starting pointer or head pointer.

Int Value Char ValueFloat Value
Link
5500

Data Part Link Part

Node1

Head Pointer
1000

Int Value Char ValueFloat Value
Link
5500

Link Part

Node1

Int Value Char ValueFloat Value
Link
5500

Data Part Link Part

Node2

Int Value Char ValueFloat Value
Link
2000

Link Part

Int Value Char ValueFloat Value
Link

NULL

Data Part

Node3
Starting
Address: 1000

Starting
Address: 5500

Starting
Address: 2000

 CH 6: Linked List 6.2

A comparative study between array and linked list is given in the following table.

SL. Array Linked List

1. Arrays are declared as fixed size. If it is
required to handle more number of
elements than the size of the array, it is
not possible to do that. Due to this reason
array is referred as static data structure.

All the nodes of a linked list are created
dynamically during the execution of the
program. This feature of the linked list
gives the facility to the user to add as many
nodes as he wants as per his requirement.
Basically there is no limitation of nodes to
be added in a linked list unless the memory
space becomes exhausted. Due to the
dynamic allocation of the nodes the linked
list is referred as dynamic data structure.

2. Data elements of an array are stored in
consecutive memory locations.

Nodes of a linked list are stored randomly
in the memory i.e. they are not allocated in
consecutive memory locations.

3. Insertion and deletion of an element in
case of array becomes problematic
because of shifting of elements from their
positions. The program execution time
increases due these shifting of the
elements in case of an array.

Insertion and deletion of a node from a
linked list is easier than array data structure.
Here shifting of the elements is not required
like array which reduces the execution
time of a program.

4. Array is a linear data structure. Linked list is a linear data structure.

5. Array allows random access to its
elements using the indices. Due to this
reason array is faster for accessing the
elements.

Linked list does not provide random access
to elements like arrays. To access an
element in a linked list, we have to start at
the beginning of the list and traverse the list
until we find the desired element. Due to
this reason linked list is slower for
accessing elements.

6. Arrays needs memory to store the
elements themselves, which takes less
memory space.

Linked list requires extra memory
compared to array. Each element in a linked
list requires a reference to the next element,
which takes additional memory space.

7. Implementation of an array is easier than
a linked list because array does not
require dynamic memory allocation.

Implementation of a linked list is more
complex than an array because it uses
dynamic memory allocation and pointers to
hold the address of another node.

 CH 6: Linked List 6.3

Types of Linked List – There are three types of linked list – 1) singly linked list, 2)
doubly lined list and 3) circular linked list.

1) Singly Linked List – A singly linked list is the simplest type of linked list in which
every node contains some data and a pointer to the next node. By saying that the node
contains a pointer to the next node, we mean that the node stores the address of the next node
in sequence. A singly linked list allows traversal of data only in one way i.e. from first node
to second node, from second node to third node and so on. We can not traverse from third
node to second node, from second node to first node. This kind of traversal is called forward
traversal. Figure 6.2 shows a singly linked list.

Fig.6.2: Pictorial view of a singly linked list with 5 nodes

The above singly linked list with five nodes is self-explanatory. The last node of the singly
linked list has no next node connected it, so it will store NULL pointer in the link part of the
last node. The NULL pointer of a singly linked list also indicates the last node. In case of a
singly linked list the starting node is always pointed by a pointer called the head pointer. The
head pointer is very important for a singly linked list, because without this head pointer the
linked list becomes inaccessible. We can traverse the entire linked list using head pointer. If
head pointer is equal to NULL, then it implies that the linked list is empty.

Declaring a singly linked list – It is being observed that every node of a singly linked list
has two parts – one is data and other is link or pointer to the next node. This implies that
every node of a linked list is formed with some mixed data types. Therefore node of a singly
linked list may be constructed only by using structure in C language. As in a linked list, every
node contains a pointer to another node of same type, it is also called a self-referential data
type.

In C a node of a singly linked list can be implemented by the following code.

struct node
{

int data;
struct node *link;

};

1. Creating a singly linked list – Creation of a singly linked list means, generation of a
specified number of nodes which will be connected to each other in a sequential manner.
Here the number of nodes (n) will be provided by the user as per his requirement. After the
execution of this operation a singly linked list with n number of nodes will be generated and
the function will return the head pointer of the linked list. The algorithm to create a singly
linked list with n number of nodes is given below.

Data
Link
1500

Head Pointer
1000

Node1

Starting
Address: 1000

Data
Link
4000

Node2

Starting
Address: 1500

Data
Link
3000

Node3

Starting
Address: 4000

Data
Link
1200

Node4

Starting
Address: 3000

Data
Link

NULL

Node5

Starting
Address: 1200

 CH 6: Linked List 6.4

Algorithm of singly linked list creation:

Step 1: Start

Step 2: Set Head_Pointer = NULL

Step 3: Input n for number of nodes to be created

Step 4: Set i = 0

Step 5: Repeat Step 6 to Step 8 while i < n

Step 6: Input Data to be stored into the node

Step 7: If i = 0 (for first node creation), then
a) Create a new node pointed by New_Node_Pointer
 Set New_Node_Pointer → data = Data
 Set New_Node_Pointer → link = NULL
 Set Head_Pointer = New_Node_Pointer
 Set Ptr = Head_Pointer
Otherwise
b) Create a new node pointed by New_Node_Pointer
 Set New_Node_Pointer → data = Data
 Set ptr → link = New_Node_Pointer
 Set ptr → link → link = NULL
 Set ptr = ptr → link
[End of If-Else (Step 7)]

Step 8: Set i = i + 1

Step 9: Print “Singly Linked List has been created successfully”.

Step 10: Set ptr = NULL

Step 11: Set New_Node_Pointer = NULL

Step 12: Stop

Now the above mentioned algorithm for the creation of a singly linked list is explained with
the help of the following pictorial representation. In this case we have assumed that the
number of nodes (n) to be created is 3. Initially the Head_Pointer is NULL to indicate that the
linked list is empty i.e. the linked list has no nodes.

 CH 6: Linked List 6.5

Steps Statements Linked List after the execution of the statement

Initially Head_Pointer = NULL

i = 0
Data = 10

New_Node_Pointer → data = Data

New_Node_Pointer → link = NULL

Head_Pointer = New_Node_Pointer

Ptr = Head_Pointer

i = 1
Data = 20

New_Node_Pointer → data = Data

ptr → link = New_Node_Pointer

ptr → link → link = NULL

ptr = ptr → link

Head_Pointer NULL

New Node

10 LinkNew_Node_Pointer

Head_Pointer NULL

NULL

New Node

10 LinkNew_Node_Pointer

Head_Pointer NULL

Head_Pointer NULL

Node1

10 Link
New_Node_Pointer

Head_Pointer NULL

Node1

10 Link
New_Node_Pointer

ptr

Head_Pointer NULL

Node1

10 Link
ptr

New Node

20 LinkNew_Node_Pointer

Head_Pointer

Node1

10 Link
ptr

Node2

20 Link20 Link

New_Node_Pointer

Head_Pointer

Node1

10 Link
ptr

Node2

20 Link20 Link

New_Node_Pointer

NULL

Head_Pointer

Node1

10 Link

ptr
Node2

20 Link20 Link

New_Node_Pointer

NULL

 CH 6: Linked List 6.6

Steps Statements Linked List after the execution of the statement

i = 2
Data = 30

New_Node_Pointer → data = Data

ptr → link = New_Node_Pointer

ptr → link → link = NULL

ptr = ptr → link

Finally ptr = NULL

New_Node_Pointer = NULL

It is being observed from the above pictorial representation of singly linked list creation that
three nodes with values 10, 20 and 30 have been created as per the algorithm. The pointers ptr
and New_Node_Pointer are used temporarily. After the creation of the linked list there will be
no use of these pointers. That’s why they are made NULL pointers. Now we can easily
understand how the algorithm of linked list creation is working step by step from the above
pictorial explanation.

User defined function in C for singly linked list creation

struct node *CreateNode()
{

struct node *headptr = NULL, *ptr, *newnodeptr;
int i, n, Data;

printf("Enter the no. of nodes to be created in the singly linked list: ");
scanf("%d", &n);

Head_Pointer

Node1

10 Link

ptr
Node2

20 Link20 Link NULL

New Node

20 LinkNew_Node_Pointer

New Node

30 LinkNew_Node_Pointer

Node3

20 Link30 LinkHead_Pointer

Node1

10 Link

ptr

Node2

20 Link20 Link

New_Node_Pointer

Node3

20 Link30 LinkHead_Pointer

Node1

10 Link

ptr

Node2

20 Link20 Link

New_Node_Pointer

NULL

Node3

20 Link30 LinkHead_Pointer

Node1

10 Link

ptr

Node2

20 Link20 Link

New_Node_Pointer

NULL

Node3

20 Link30 LinkHead_Pointer

Node1

10 Link

Node2

20 LinkLink NULL

 CH 6: Linked List 6.7

for(i=0; i<n; i++)
{

printf("Enter Data%d: ", i+1);
scanf("%d", &Data);
if(i == 0)
{

 newnodeptr = (struct node *)malloc(sizeof(struct node));
 newnodeptr->data = Data;
 newnodeptr->link = NULL;

 headptr = newnodeptr;
ptr = headptr;

}
else
{

 newnodeptr = (struct node *)malloc(sizeof(struct node));
 newnodeptr->data = Data;

 ptr->link = newnodeptr;
 ptr->link->link = NULL;
 ptr = ptr->link;

}
}
printf("Singly Linked list has been created successfully.\n\n");
ptr = NULL;
return headptr;

}

2. Displaying the data of all nodes in a singly linked list – This operation displays/ prints
the data of all nodes in a singly linked list in forward direction i.e. from starting node to last
node. In this case a temporary pointer is taken to point the starting node or first node initially.
It is required to traverse all the nodes from first node to last node and during this traversal the
data of every node is displayed on the screen. Here traversal means, pointing the nodes one
after another in forward direction until the end of the linked list.

Algorithm of displaying the data of all nodes in a singly linked list:

Step 1: Start

Step 2: Set ptr = Head_Pointer

Step 3: Repeat Step 4 to Step 5 while ptr ≠ NULL

Step 4: Print ptr → data

Step 5: Set ptr = ptr → link

Step 6: Set ptr = NULL

Step 7: Stop

 CH 6: Linked List 6.8

From this algorithm it is clear that the pointer ptr points to starting node of the singly linked
list initially. The pointer ptr shifts its position from first node to second node, second node to
third node, third node to fourth node and so on until it becomes NULL. During this traversal
of all nodes the data value of every nodes are printed on the screen.

User defined function in C for displaying the data of all nodes in a singly linked list

void DisplayNode(struct node *headptr)
{
 struct node *ptr = headptr;

printf("The singly linked list is given below:\n");

while(ptr != NULL)
{

printf("%-5d", ptr->data);
ptr = ptr->link;

}

printf("\n\n");

ptr = NULL;
}

3. Counting the number of nodes in a singly linked list – This operation counts the number
of nodes in a singly linked list. Here a variable ‘count’ is initialized to zero and incremented
by one each time the pointer ptr traverses the successive nodes in the linked list.

Algorithm to count the number of nodes in a singly linked list:

Step 1: Start

Step 2: Set count = 0

Step 3: Set ptr = Head_Pointer

Step 4: Repeat Step 5 to Step 6 while ptr ≠ NULL

Step 5: Set count = count + 1

Step 6: Set ptr = ptr → link

Step 7: Print count to display the number of nodes

Step 8: Set ptr = NULL

Step 9: Stop

 CH 6: Linked List 6.9

User defined function in C for counting the number of nodes in a singly linked list

void CountNodes(struct node *headptr)
{
 int count = 0;
 struct node *ptr = headptr;

while(ptr != NULL)
{

count++;
ptr = ptr->link;

}
printf(“The no. of nodes in the linked list: %d\n”, count);

 ptr = NULL;
}

4. Insert a node at the beginning of a singly linked list – Here a new node will be inserted
at the beginning of a singly linked list. After the insertion the new node becomes the starting
node or the first node of the singly linked list. Therefore the Head_Pointer must be shifted
from the second node to the first node to point at the beginning of the linked list.

Algorithm to insert a node at the beginning of a singly linked list:

Step 1: Start

Step 2: Input Data to be stored into the new node

Step 3: Create a new node pointed by New_Node_Pointer

Step 4: Set New_Node_Pointer → data = Data

Step 5: Set New_Node_Pointer → link = Head_Pointer

Step 6: Set Head_Pointer = New_Node_Pointer

Step 7: Print “A new node has been inserted at the starting successfully”.

Step 8: New_Node_Pointer = NULL

Step 9: Stop

At first a value which is to be stored into the data part of the newly created node will be taken
from the user and that value (called Data) will be stored into the new node. Now the new
node will be added at the beginning of the existing linked list by the establishment of the link
and Head_Pointer. The concept of the above mentioned algorithm is explained pictorially in
the following table. In the following table it is assumed that the existing singly linked list has
two nodes with values 20 and 30. Now the insertion of a new node with value 10 at the
starting of the linked list is shown step by step.

 CH 6: Linked List 6.10

Steps Statements Linked List after the execution of the statement

Initially

Data = 10 New_Node_Pointer → data = Data

New_Node_Pointer → link =
Head_Pointer

Head_Pointer = New_Node_Pointer

Finally New_Node_Pointer = NULL

User defined function in C to insert a new node at the beginning of a singly linked list

struct node *InsertAtStart(struct node *headptr)
{

struct node *newnodeptr;
 int Data;

 printf(“Enter the data to be stored into the new node: “);
 scanf(“%d”, &Data);

newnodeptr = (struct node *)malloc(sizeof(struct node));
newnodeptr->data = Data;
newnodeptr->link = headptr;
headptr = newnodeptr;

printf("A new node has been inserted at the starting successfully.\n\n");

newnodeptr = NULL;

return headptr;
}

New Node

10 LinkNew_Node_Pointer

Head_Pointer

Node1

20 Link

Node2

20 Link30 Link NULL

Head_Pointer

Node1

20 Link

Node2

20 Link30 Link NULL

Node3

20 Link30 LinkHead_Pointer

Node1

10 Link

Node2

20 LinkLink

New_Node_Pointer

NULL

Node3

20 Link30 LinkHead_Pointer

Node1

10 Link

Node2

20 LinkLink NULL

Node3

20 Link30 Link

Head_Pointer

Node1

10 Link

Node2

20 Link20 LinkNew_Node_Pointer NULL

 CH 6: Linked List 6.11

5. Insert a node at the end of a singly linked list – This operation inserts a newly created
node at the end of a singly linked list i.e. it add the new node after the last node of the
existing linked list. After the insertion at the end the new node becomes the last node of the
linked list and that’s why the new node must be terminated with NULL link.

Algorithm to insert a node at the end of a singly linked list:

Step 1: Start

Step 2: Set ptr = Head_Pointer

Step 3: Input Data to be stored into the new node

Step 4: If ptr = NULL (Condition for empty linked list), then
a) Create a new node pointed by New_Node_Pointer
 Set New_Node_Pointer → data = Data
 Set New_Node_Pointer → link = NULL
 Set Head_Pointer = New_Node_Pointer
Otherwise
b) Repeat (c) while ptr → link ≠ NULL
c) ptr = ptr → link

d) Create a new node pointed by New_Node_Pointer
 Set New_Node_Pointer → data = Data
 Set ptr → link = New_Node_Pointer
 Set ptr → link → link = NULL
[End of If-Else (Step 4)]

Step 5: Print “A new node has been inserted at the end successfully”.

Step 6: Set ptr = NULL

Step 7: Set New_Node_Pointer = NULL

Step 8: Stop

In the above algorithm two situations during the insertion of a node at the end has been
considered – one situation when the singly linked list is empty and other situation when the
linked list is not empty. When the linked list is empty the Head_Pointer is shifted to point the
new node after the insertion. When the linked list is not empty a temporary pointer ptr is used
to point to the last node of the linked list and then the newly created node is inserted at the
end of the linked list using the link part of the last node. In the following pictorial
demonstration of inserting a node at the end, two situations have been considered, In the first
pictorial representation a new node with value 30 is being added at the end of an empty
linked list and in the second pictorial representation a new node with value 30 is being added
at the end of a linked list of two nodes with values 10 and 20.

 CH 6: Linked List 6.12

The following table gives the step by step demonstration when the linked list is empty
initially.

Steps Statements Linked List after the execution of the statement

Initially Head_Pointer = NULL
ptr = Head_Pointer

Data = 30 New_Node_Pointer → data = Data

New_Node_Pointer → link = NULL

Head_Pointer = New_Node_Pointer

Finally ptr = NULL

New_Node_Pointer = NULL

The following table gives the step by step demonstration when the linked list is not empty
initially.

Steps Statements Linked List after the execution of the statement

Initially ptr = Head_Pointer

Traversal
of Nodes

ptr = ptr → link

Data = 30 New_Node_Pointer → data = Data

ptr → link = New_Node_Pointer

ptr → link → link = NULL

Finally ptr = NULL

New_Node_Pointer = NULL

Node3

20 Link30 LinkHead_Pointer

Node1

10 Link

Node2

20 LinkLink NULL

Head_Pointer

Node1

10 Link

Node2

20 Link20 Link NULL

ptr

New Node

30 LinkNew_Node_Pointer

Head_Pointer

Node1

10 Link

Node2

20 Link20 Link NULL

ptr

Head_Pointer

Node1

10 Link

Node2

20 Link20 Link NULL

ptr

Node3

20 Link30 LinkHead_Pointer

Node1

10 Link

ptr

Node2

20 LinkLink

New_Node_Pointer

Node3

20 Link30 LinkHead_Pointer

Node1

10 Link

ptr

Node2

20 LinkLink

New_Node_Pointer

NULL

Head_Pointer NULL

New Node

30 LinkNew_Node_Pointer

Head_Pointer NULL

NULL

New Node

30 LinkNew_Node_Pointer

Head_Pointer NULL

Head_Pointer NULL

Node1

30 Link
New_Node_Pointer

 ptr NULL

Head_Pointer

Node1

30 Link NULL

 CH 6: Linked List 6.13

User defined function in C to insert a new node at the end of a singly linked list

struct node *InsertAtLast(struct node *headptr)
{

struct node *ptr = headptr, *newnodeptr;
 int Data;

 printf(“Enter the data to be stored into the new node: “);
 scanf(“%d”, &Data);

if(ptr == NULL)
{

 newnodeptr = (struct node *)malloc(sizeof(struct node));
 newnodeptr->data = Data;
 newnodeptr->link = NULL;

 headptr = newnodeptr;
}
else
{

while(ptr->link != NULL)
ptr = ptr->link;

 newnodeptr = (struct node *)malloc(sizeof(struct node));
 newnodeptr->data = Data;

 ptr->link = newnodeptr;
 ptr->link->link = NULL;

}

printf("A new node has been inserted at the end successfully.\n\n");

ptr = NULL;
 newnodeptr = NULL;

return headptr;
}

6. Insert a node before a specific node in a singly linked list – This function will insert a
new node just before another node which is specified by the user. Here we have to consider
two situations.

In first situation the specified node is the first node in the linked list. So the insertion of a new
node before the first node is basically the insertion of a new node at the beginning of the link
list, which has been already discussed previously in this chapter. In second situation when the
specified node is not first node, we have to insert the newly created node in between the
specified node and the node just before the specified node. Except these two situations, there
is another situation where the specified node is not found in the linked list. In that case an
error message will be printed.

 CH 6: Linked List 6.14

Algorithm of inserting a node before a specific node in a singly linked list:

Step 1: Start

Step 2: Set ptr = Head_Pointer

Step 3: Input Value of a node before which a new node will be inserted

Step 4: Input Data to be stored into the new node

Step 5: If ptr → data = Value [Condition of finding Value in 1st node], then
a) Create a new node pointed by New_Node_Pointer
 Set New_Node_Pointer → data = Data
 Set New_Node_Pointer → link = Head_Pointer
 Set Head_Pointer = New_Node_Pointer
Otherwise
b) Repeat (c) while ptr → link ≠ NULL and ptr → link → data ≠ Value
c) Set ptr = ptr → link

d) If ptr → link = NULL, then
i) Print “The node before which insertion will be done is not found”.
Otherwise
ii) Create a new node pointed by New_Node_Pointer

 Set New_Node_Pointer → data = Data
Set New_Node_Pointer → link = ptr → link
Set ptr → link = New_Node_Pointer
Print “A new node has been inserted before the specified node”.

[End of If-Else (d)]
[End of If-Else (Step 5)]

Step 6: Set ptr = NULL

Step 7: Set New_Node_Pointer = NULL

Step 8: Stop

In this algorithm we can see that there are two situations for inserting a node before another
node. In one situation the specified node is the first node, which is given under the If
condition in the algorithm. In this case, the algorithm of inserting a node at the beginning
(explained previously) will be followed. In another situation when the specified node is not
first node, the algorithm under the Otherwise/ Else condition will be executed. Under this
Otherwise condition there are two cases – when the specified node is not found in the linked
list and the specified node is found in any other position except the first position in the linked
list. Now the two situations – 1) the specified node is the first node and 2) the specified node
is any other node except the first node are illustrated in the following tabular pictorial
representations.

 CH 6: Linked List 6.15

The following table gives the step by step demonstration while the first node is the specified
node before which a new node will be inserted.

Steps Statements Linked List after the execution of the statement

Initially ptr = Head_Pointer

Value = 20
Data = 10

ptr -> data = 20
ptr → data equal to Value

New_Node_Pointer → data = Data

New_Node_Pointer → link =
Head_Pointer

Head_Pointer = New_Node_Pointer

Finally ptr = NULL

New_Node_Pointer = NULL

New Node

10 LinkNew_Node_Pointer

Node3

20 Link30 LinkHead_Pointer

Node1

10 Link

Node2

20 LinkLink NULL

Head_Pointer

Node2

20 Link30 Link

ptr

Node1

20 LinkLink NULL

Head_Pointer

Node2

20 Link30 Link

ptr

Node1

20 LinkLink NULL

Head_Pointer

Node2

20 Link30 Link

Node1

10 Link

ptr

Node2

20 LinkLinkNew_Node_Pointer NULL

Head_Pointer

Node2

20 Link30 Link

Node1

10 Link

ptr

Node2

20 LinkLink

New_Node_Pointer

NULL

 CH 6: Linked List 6.16

The following table gives the step by step demonstration while the the specified node before
which a new node will be inserted is any other node except first node.

Steps Statements Linked List after the execution of the statement

Initially ptr = Head_Pointer

Value = 40
Data = 20

ptr → link → data = 30
ptr → link → data not equal to
Value

ptr = ptr → link

Value = 40
Data = 20

ptr → link → data = 40
ptr → link → data equal to Value

New_Node_Pointer → data = Data

New_Node_Pointer → link = ptr
→ link

ptr -> link = New_Node_Pointer

Finally ptr = NULL

New_Node_Pointer = NULL

New Node

20 LinkNew_Node_Pointer

Head_Pointer

Node2

30 Link

Node3

20 Link40 Link

Node1

10 Link

ptr

NULL

Head_Pointer

Node2

30 Link

Node3

20 Link40 Link

Node1

10 Link

ptr

NULL

Head_Pointer

Node2

30 Link

Node3

20 Link40 Link

Node1

10 Link

ptr

NULL

Head_Pointer

Node2

30 Link

Node3

20 Link40 Link

Node1

10 Link

ptr

New
Node

20 LinkLink

NULL

New_Node_Pointer

Head_Pointer

Node2

30 Link

Node4

20 Link40 Link

Node1

10 Link

ptr

Node3

20 LinkLink

NULL

New_Node_Pointer

Head_Pointer

Node2

30 Link

Node4

20 Link40 Link

Node1

10 Link

Node3

20 LinkLink NULL

 CH 6: Linked List 6.17

User defined function in C to insert a new node before a specific node in a singly linked
list

struct node *InsertBeforeNode(struct node *headptr)
{

struct node *ptr = headptr, *newnodeptr;
 int Data, Value;

 printf("Enter the value of a node before which a new node will be inserted: ");
scanf("%d", &Value);
printf("Enter the data of the new node to be inserted before the specified node: ");
scanf("%d", &Data);

if(ptr->data == Value)
{

 newnodeptr = (struct node *)malloc(sizeof(struct node));
 newnodeptr->data = Data;
 newnodeptr->link = headptr;
 headptr = newnodeptr;

}
else
{

while(ptr->link != NULL && ptr->link->data != Value)
ptr = ptr->link;

if(ptr->link == NULL)
 printf("The node before which insertion will be done is not found.\n\n");
else
{

newnodeptr = (struct node *)malloc(sizeof(struct node));
newnodeptr->data = Data;
newnodeptr->link = ptr->link;
ptr->link = newnodeptr;
printf("A new node has been inserted before the specified node

 successfully.\n\n");
}

}

newnodeptr = NULL;
ptr = NULL;

return headptr;
}

 CH 6: Linked List 6.18

7. Insert a node after a specific node in a singly linked list – This operation will insert a
new node just after another node which is specified by the user. Here at first the node with the
specified value is searched through the traversal of the linked list and if the specified node is
found, a new node with entered data will be inserted after it, otherwise an error message will
be displayed.

Algorithm of inserting a node after a specific node in a singly linked list:

Step 1: Start

Step 2: Set ptr = Head_Pointer

Step 3: Input Value of a node after which a new node will be inserted

Step 4: Input Data to be stored into the new node

Step 5: Repeat Step 6 while ptr ≠ NULL and ptr → data ≠ Value

Step 6: Set ptr = ptr → link

Step 7: If ptr = NULL, then
a) Print “The node after which insertion will be done is not found”.
Otherwise
b) Create a new node pointed by New_Node_Pointer
 Set New_Node_Pointer → data = Data
 Set New_Node_Pointer → link = ptr → link
 Set ptr → link = New_Node_Pointer
 Print “A new node has been inserted after the specified node”.
[End of If-Else (Step 7)]

Step 8: Set ptr = NULL

Step 9: Set New_Node_Pointer = NULL

Step 10: Stop

 CH 6: Linked List 6.19

The following table gives the step by step demonstration while a new node will be inserted
after the specified node at any position of the linked list.

Steps Statements Linked List after the execution of the statement

Initially ptr = Head_Pointer

Value = 30
Data = 20

ptr → data = 10
ptr → data not equal to Value

ptr = ptr → link

Value = 30
Data = 20

ptr → data = 30
ptr → data equal to Value

New_Node_Pointer → data = Data

New_Node_Pointer → link = ptr
→ link

ptr -> link = New_Node_Pointer

Finally ptr = NULL

New_Node_Pointer = NULL

New Node

20 LinkNew_Node_Pointer

Head_Pointer

Node2

30 Link

Node3

20 Link40 Link

Node1

10 Link

ptr

NULL

Head_Pointer

Node2

30 Link

Node3

20 Link40 Link

Node1

10 Link

ptr

NULL

Head_Pointer

Node2

30 Link

Node3

20 Link40 Link

Node1

10 Link

ptr

NULL

Head_Pointer

Node2

30 Link

Node3

20 Link40 Link

Node1

10 Link

ptr

New
Node

20 LinkLink

NULL

New_Node_Pointer

Head_Pointer

Node2

30 Link

Node4

20 Link40 Link

Node1

10 Link

ptr

Node3

20 LinkLink

NULL

New_Node_Pointer

Head_Pointer

Node2

30 Link

Node4

20 Link40 Link

Node1

10 Link

Node3

20 LinkLink NULL

 CH 6: Linked List 6.20

User defined function in C to insert a new node after a specific node in a singly linked
list

struct node *InsertAfterNode(struct node *headptr)
{

struct node *ptr = headptr, *newnodeptr;
 int Data, Value;

 printf("Enter the value of a node after which a new node will be inserted: ");
scanf("%d", &Value);
printf("Enter the data of the new node to be inserted after the specified node: ");
scanf("%d", &Data);

while(ptr != NULL && ptr->data != Value)
ptr = ptr->link;

if(ptr == NULL)
printf("The node after which insertion will be done is not found.\n\n");

else
{

newnodeptr = (struct node *)malloc(sizeof(struct node));
newnodeptr->data = Data;
newnodeptr->link = ptr->link;
ptr->link = newnodeptr;
printf("A new node has been inserted after the specified node.\n\n");

}

 ptr = NULL;
newnodeptr = NULL;

return headptr;
}

8. Insert a node at a specific position of a singly linked list – This function gives the
opportunity to insert a new node with an entered data at a specified position of a singly linked
list. In this case the remaining part of the linked list starting from the specific position will be
shifted right and the new node will be placed at the specified position. For example – if the
specified position is 3rd in a singly linked list of three nodes, then the new node will be placed
at 3rd position and the 3rd node of the existing linked list will be shifted right one position to
become 4th node.

 CH 6: Linked List 6.21

Algorithm of inserting a node at a specific position of a singly linked list:

Step 1: Start

Step 2: Set ptr = Head_Pointer

Step 3: Input Position where a new node will be inserted

Step 4: Input Data to be stored into the new node

Step 5: Set NoOfNodes = Total number of nodes in the linked list

Step 6: If Position < 1 or Position > NoOfNodes + 1, then
a) Print “Entered position is Invalid”.
Otherwise
b) If Position = 1 (Condition of 1st node selection), then

i) Create a new node pointed by New_Node_Pointer
 Set New_Node_Pointer → data = Data

Set New_Node_Pointer → link = Head_Pointer
Set Head_Pointer = New_Node_Pointer

Otherwise
i) Set i = 1
ii) Repeat iv) and v) while i < Position – 1
iii) Set ptr = ptr → link
iv) Set i = i + 1

v) Create a new node pointed by New_Node_Pointer
 Set New_Node_Pointer → data = Data

Set New_Node_Pointer → link = ptr → link
Set ptr → link = New_Node_Pointer
Print “A new node has been inserted at a specific position”.

[End of If-Else (b)]
[End of If-Else (Step 6)]

Step 7: Set ptr = NULL

Step 8: Set New_Node_Pointer = NULL

Step 9: Stop

In this algorithm we have assumed two cases.

1) When 1st position is selected, the new node will be inserted at the beginning of the linked
list. Therefore we have followed the algorithm of inserting a node at the starting of the linked
list.

 CH 6: Linked List 6.22

2) When any other position except 1st position is selected, then after traversal of nodes a
temporary pointer ptr will point to the predecessor node of the node at selected position. Now
a new node will be inserted in between the predecessor node and the node at the specific
position. The two cases have been demonstrated pictorially in the following two tables.

The following table gives the step by step demonstration while a new node will be inserted at
the first position of the linked list.

Steps Statements Linked List after the execution of the statement

Initially ptr = Head_Pointer

Position = 1
Data = 10 New_Node_Pointer → data = Data

New_Node_Pointer → link =
Head_Pointer

Head_Pointer =
New_Node_Pointer

Finally ptr = NULL

New_Node_Pointer = NULL

New Node

10 LinkNew_Node_Pointer

Node3

20 Link30 LinkHead_Pointer

Node1

10 Link

Node2

20 LinkLink NULL

Head_Pointer

Node2

20 Link30 Link

ptr

Node1

20 LinkLink NULL

Head_Pointer

Node2

20 Link30 Link

ptr

Node1

20 LinkLink NULL

Head_Pointer

Node2

20 Link30 Link

Node1

10 Link

ptr

Node2

20 LinkLinkNew_Node_Pointer NULL

Head_Pointer

Node2

20 Link30 Link

Node1

10 Link

ptr

Node2

20 LinkLink

New_Node_Pointer

NULL

 CH 6: Linked List 6.23

The following table gives the step by step demonstration while a new node will be inserted at
the specific position of the linked list.

Steps Statements Linked List after the execution of the statement

Initially ptr = Head_Pointer

Position = 3
Data = 20

i = 1
i < Position – 1

ptr = ptr → link

Position = 3
Data = 20

i = 2
i < Position – 1 not satisfied

New_Node_Pointer → data =
Data

New_Node_Pointer → link = ptr
→ link

ptr → link = New_Node_Pointer

Finally ptr = NULL

New_Node_Pointer = NULL

New Node

20 LinkNew_Node_Pointer

Head_Pointer

Node2

30 Link

Node3

20 Link40 Link

Node1

10 Link

ptr

NULL

Head_Pointer

Node2

30 Link

Node3

20 Link40 Link

Node1

10 Link

ptr

NULL

Head_Pointer

Node2

30 Link

Node3

20 Link40 Link

Node1

10 Link

ptr

NULL

Head_Pointer

Node2

30 Link

Node3

20 Link40 Link

Node1

10 Link

ptr

New
Node

20 LinkLink

NULL

New_Node_Pointer

Head_Pointer

Node2

30 Link

Node4

20 Link40 Link

Node1

10 Link

ptr

Node3

20 LinkLink

NULL

New_Node_Pointer

Head_Pointer

Node2

30 Link

Node4

20 Link40 Link

Node1

10 Link

Node3

20 LinkLink NULL

 CH 6: Linked List 6.24

User defined function in C to insert a new node at a specific position of a singly linked
list

struct node *InsertAtPos(struct node *headptr)
{

struct node *ptr = headptr, *newnodeptr;
int i, NoOfNodes;

NoOfNodes = CountNodes(headptr);

 printf(“Enter the position where a new node will be inserted: “);
 scanf(“%d”, &Position);
 printf(“Enter the data of the new node to be inserted: “);
 scanf(“%d”, &Data);

if(Position < 1 || Position > NoOfNodes + 1)
{

printf("The specified position is wrong.\n\n");
}
else if(Position == 1)
{

 newnodeptr = (struct node *)malloc(sizeof(struct node));
 newnodeptr->data = Data;
 newnodeptr->link = headptr;
 headptr = newnodeptr;

}
else
{

for(i=1; i<Position - 1; i++)
ptr = ptr->link;

newnodeptr = (struct node *)malloc(sizeof(struct node));
newnodeptr->data = Data;
newnodeptr->link = ptr->link;
ptr->link = newnodeptr;
printf("A new node has been inserted at a specific position.\n\n");

}

newnodeptr = NULL;
ptr = NULL;

return headptr;
}

 CH 6: Linked List 6.25

9. Delete a node at the beginning of a singly linked list – This operation deletes a node at
the beginning of a singly linked list. Basically it removes the first node from the linked list.
As a result of this, the second node becomes the first node of the list. Therefore the
Head_Pointer should be shifted from the first node to the second node and then the first node
is removed from the linked list.

Algorithm to delete a node at the beginning of a singly linked list:

Step 1: Start

Step 2: Set ptr = Head_Pointer

Step 3: If ptr = NULL (Condition for empty linked list), then
a) Print “The linked list is empty”
Otherwise
b) Set Head_Pointer = ptr → link
 Remove the node pointed by ptr
 Print “The node has been deleted at the starting of the linked list”
[End of If-Else (Step 3)]

Step 4: Set ptr = NULL

Step 5: Stop

The algorithm is very short. Therefore pictorial representation in this case is not required.
How the algorithm is working is thus completely self-explanatory.

User defined function in C to delete a node at the beginning of a singly linked list

struct node *DeleteAtStart(struct node *headptr)
{

struct node *ptr = headptr;

if(ptr == NULL)
{

printf("The linked list is empty.\n\n");
}
else
{

headptr = ptr->link;
free(ptr);
printf("The node has been deleted at the starting successfully.\n\n");

}
ptr = NULL;
return headptr;

}

 CH 6: Linked List 6.26

10. Delete a node at the end of a singly linked list – In this operation the node at the end of
a singly linked list will be removed. Here two situations have been considered. In one
situation, in case of a linked list with a single node, the one and only node will be pointed by
ptr, the Head_Pointer is made NULL and finally the node is removed. In another situation,
the ptr points to the last node and the prevvptr points to the node just before the last node,
prevptr → link is made NULL and finally the last node pointed by the pointer ptr will be
deleted from the linked list.

Algorithm to delete a node at the end of a singly linked list:

Step 1: Start

Step 2: Set ptr = Head_Pointer

Step 3: Set prevptr = Head_Pointer

Step 4: If ptr = NULL (Condition for empty linked list), then
a) Print “The linked list is empty”
Otherwise
b) Repeat c) and d) while ptr → link ≠ NULL
c) Set prevptr = ptr
d) Set ptr = ptr → link

e) Set prevptr → link = NULL
f) If ptr = Head_Pointer (Condition for single node in linked list), then

i) Set Head_Pointer = NULL
[End of If (f)]

g) Remove the node pointed by ptr
h) Print “The node has been deleted at the end of the linked list”
[End of If-Else (Step 4)]

Step 5: Set ptr = NULL

Step 6: Set prevptr = NULL

Step 7: Stop

In this algorithm two situations have been considered.

1) When the linked list contains a single node, the node will be pointed by ptr first, then the
Head_Pointer is made NULL and finally the starting node will be removed.

2) When the linked list has multiple nodes, the last node will be pointed by a pointer ptr and
the node before the last node will be pointed by another pointer prevptr after traversing the
nodes one by one starting from 1st node. Finally prevptr → link is made NULL and the last
node pointed by ptr is removed from the linked list.

 CH 6: Linked List 6.27

The following table gives step by step demonstration to delete the last node when the linked
list consists of only one node.

Steps Statements Linked List after the execution of the statement

Initially ptr = Head_Pointer

prevptr = Head_Pointer

Head_Pointer = NULL

Finally Remove the node pointed by ptr
[free(ptr)]
ptr = NULL prevptr = NULL

The following table gives step by step demonstration to delete the last node when the linked
list consists of multiple number of nodes.

Steps Statements Linked List after the execution of the statement

Initially ptr = Head_Pointer

prevptr = Head_Pointer

Traversal of
Nodes

prevptr = ptr

ptr = ptr → link

prevptr = ptr

ptr = ptr → link

prevptr = ptr

ptr = ptr → link

prevptr → link = NULL

Finally Remove the node pointed by ptr
[free(ptr)]

ptr = NULL prevptr = NULL

Head_Pointer

Node1

10 Link NULL

ptr

prevptr

Head_Pointer NULL

Node1

10 Link NULL

ptr

prevptr

Head_Pointer NULL

Head_Pointer

Node2

30 Link

Node4

20 Link40 Link

Node1

10 Link

Node3

20 LinkLink NULL

ptr

prevptr

Head_Pointer

Node2

30 Link

Node4

20 Link40 Link

Node1

10 Link

Node3

20 LinkLink NULL

ptr

prevptr

Head_Pointer

Node2

30 Link

Node4

20 Link40 Link

Node1

10 Link

Node3

20 LinkLink NULL

ptr

prevptr

Head_Pointer

Node2

30 Link

Node4

20 Link40 Link

Node1

10 Link

Node3

20 LinkLink NULL

ptr

prevptr

Head_Pointer

Node2

30 Link

Node1

10 Link

Node3

20 LinkLink

prevptr

NULL

Node4

20 Link40 Link NULLptr

Head_Pointer

Node2

30 Link

Node1

10 Link

Node3

20 LinkLink NULL

 CH 6: Linked List 6.28

User defined function in C to delete a node at the end of a singly linked list

struct node *DeleteAtLast(struct node *headptr)
{

struct node *ptr = headptr, *prevptr = headptr;

if(ptr == NULL)
{

printf("The linked list is empty.\n\n");
}
else
{

while(ptr->link != NULL)
{

prevptr = ptr;
ptr = ptr->link;

}

prevptr->link = NULL;
if(ptr == headptr)

headptr = NULL;
free(ptr);
printf("The node has been deleted at the end successfully.\n\n");

}

prevptr = NULL;
ptr = NULL;
return headptr;

}

11. Delete a node before a specific node in a singly linked list – Here three error cases and
two cases of deletion will be considered.
The three error cases are:
1) The first error case occurs when the linked list is empty.
2) The second error case occurs when the first node is selected. Obviously there will be no
node for deletion before the first node.
3) The third error case occurs when a value given by a user is not found in any node of the
linked list.

The two cases to delete a node before a specified node are given below.
1) If the value of the second node is given by a user, then obviously the first node of the
linked list will be deleted. Here the algorithm of deletion of a node at the beginning of the
linked list will be followed.
2) If the value of a node except the second node is selected, then the node just before the
specified node will be removed using another procedure.

 CH 6: Linked List 6.29

Algorithm to delete a node before the specified node of a singly linked list:

Step 1: Start

Step 2: Set ptr = Head_Pointer

Step 3: Set prevptr = Head_Pointer

Step 4: Input Value of a node before which a node will be deleted

Step 5: If ptr = NULL (Condition for empty linked list), then
a) Print “The linked list is empty”.
Otherwise
b) If Head_Pointer → data = Data (Condition of matching Data in 1st node), then

i) Print “The deletion of a node before the first node is not possible”.
Otherwise
ii) If ptr→link ≠ NULL and ptr→link→data = Value [for 2nd node selection], then

1. Delete the node at the beginning of the linked list
Otherwise
2. Repeat 3. and 4. while ptr→link ≠ NULL and ptr→link→data ≠ Value

[Loop for traversal of nodes]
3. Set prevptr = ptr
4. Set ptr = ptr → link
5. If ptr → link = NULL, then

A. Print “ The node before which deletion will be done is not found”.
Otherwise
B. Set prevptr → link = ptr → link
C. Remove the node pointed by ptr
D. Print “ The node has been deleted before the specified node”.
[End of If-Else (5.)]

[End of If-Else (ii)]
[End of If-Else (b)]

[End of If-Else (Step 5)]

Step 6: Set prevptr = NULL

Step 7: Set ptr = NULL

Step 8: Stop

In the above algorithm the pointer prevptr is used to point the predecessor node of the node
pointed by the pointer ptr. Here two situations occur – in the first case the node at the
beginning of the linked list is deleted when the second node is selected. The first case has
already been explained previously. In the second case any other node except the first node
will be removed. Only this situation is demonstrated pictorially in the following table.

 CH 6: Linked List 6.30

Steps Statements Linked List after the execution of the statement

Initially ptr = Head_Pointer

prevptr = Head_Pointer

Traversal of
Nodes

Value = 40

prevptr = ptr

ptr = ptr → link

prevptr = ptr

ptr = ptr → link

prevptr → link = ptr → link

Finally Remove the node pointed by ptr
[free(ptr)]

ptr = NULL prevptr = NULL

User defined function in C to delete a node before a specific node in a singly linked list

struct node *DeleteBeforeNode(struct node *headptr)
{

struct node *ptr = headptr, *prevptr = headptr;

 printf(“Enter the value of a node before which another node will be deleted: “);
 scanf(“%d”, &Value);

if(ptr == NULL)
{

printf("The linked list is empty.\n\n");
}
else if(headptr->data == Value)
{

printf("The deletion of a node before the first node is not possible.\n\n");
}
else if(ptr->link != NULL && ptr->link->data == Value)
{

headptr = DeleteAtStart(headptr);
}

Head_Pointer

Node2

30 Link

Node4

20 Link40 Link

Node1

10 Link

Node3

20 LinkLink NULL

ptr

prevptr

Head_Pointer

Node2

30 Link

Node4

20 Link40 Link

Node1

10 Link

Node3

20 LinkLink NULL

ptr

prevptr

Head_Pointer

Node2

30 Link

Node4

20 Link40 Link

Node1

10 Link

Node3

20 LinkLink NULL

ptr

prevptr

Head_Pointer

Node2

30 Link

Node1

10 Link

Node4

40 LinkLink NULL

Head_Pointer

Node2

30 Link

Node1

10 Link

Node3

20 LinkLink

Ptr

prevptr

Node4

20 Link40 Link NULL

 CH 6: Linked List 6.31

else
{

while(ptr->link != NULL && ptr->link->data != Value)
{

prevptr = ptr;
ptr = ptr->link;

}

if(ptr->link == NULL)
 printf("The node before which deletion will be done is not found.\n\n");
else
{
 prevptr->link = ptr->link;

 free(ptr);
 printf("The node has been deleted before the specified node\n\n");

}

}

prevptr = NULL;
ptr = NULL;
return headptr;

}

12. Delete a node after a specific node in a singly linked list – Here three error cases will
be considered.
The three error cases are:
1) The first error case occurs when the linked list is empty.
2) The second error case occurs when the last node is selected. Obviously there will be no
node for deletion after the last node.
3) The third error case occurs when a value given by a user is not found in any node of the
linked list.

In case of removal of a node after another node, the value of the node after with a node will
be deleted is provided by a user. After successive traversal of the nodes, the node whose value
is given is pointed by a pointer prevptr and the successor node is pointed by another pointer
ptr. Now the node pointed by ptr will be removed from the linked list as per the requirement.
Here prevptr always points to the predecessor node of the node pointed by ptr.

 CH 6: Linked List 6.32

Algorithm to delete a node after the specified node of a singly linked list:

Step 1: Start

Step 2: Set ptr = Head_Pointer

Step 3: Set prevptr = Head_Pointer

Step 4: Input Value of a node after which a node will be deleted

Step 5: If ptr = NULL (Condition for empty linked list), then
a) Print “The linked list is empty”.
Otherwise
b) Set ptr = ptr → link
c) Repeat d) and e) while ptr ≠ NULL and prevptr→data ≠ Value

Loop for traversal of nodes]
d) Set prevptr = ptr
e) Set ptr = ptr → link
f) If prevptr → data ≠ Value, then

i) Print “The node after which deletion will be done is not found”.
Otherwise
ii) If prevptr→link = NULL, then

1. Print “The deletion of a node after the last node is not possible”.
Otherwise
2. Set prevptr → link = ptr → link
3. Remove the node pointed by ptr
4. Print “ The node has been deleted after the specified node”.

 [End of If-Else (ii)]
 [End of If-Else (f)]

 [End of If-Else (Step 5)]

Step 6: Set prevptr = NULL

Step 7: Set ptr = NULL

Step 8: Stop

In the above algorithm the specified value is searched among the nodes of the linked list. The
data of each and every node is compared to the given value during the traversal of nodes from
the 1st node. If the value is found in the data part of any node, the node is pointed by prevptr
and the successor node is pointed by ptr. Ultimately the successor node will be removed from
the linked list as per our requirement. The step-by-step demonstration of this algorithm is
given below.

 CH 6: Linked List 6.33

Steps Statements Linked List after the execution of the statement

Initially ptr = Head_Pointer

prevptr = Head_Pointer

ptr = ptr → link

Traversal of
Nodes

Value = 30

prevptr = ptr

ptr = ptr → link

prevptr → link = ptr → link

Finally Remove the node pointed by ptr
[free(ptr)]

ptr = NULL prevptr = NULL

User defined function in C to delete a node after a specific node in a singly linked list

struct node *DeleteAfterNode(struct node *headptr)
{

struct node *ptr = headptr, *prevptr = headptr;

 printf(“Enter the value of a node after which another node will be deleted: “);
 scanf(“%d”, &Value);

if(ptr == NULL)
{

printf("The linked list is empty.\n\n");
}
else
{

ptr = ptr->link;

while(ptr != NULL && prevptr->data != Value)
{

prevptr = ptr;
ptr = ptr->link;

}

Head_Pointer

Node2

30 Link

Node4

20 Link40 Link

Node1

10 Link

Node3

20 LinkLink NULL

ptr

prevptr

Head_Pointer

Node2

30 Link

Node4

20 Link40 Link

Node1

10 Link

Node3

20 LinkLink NULL

ptr

prevptr

Head_Pointer

Node2

30 Link

Node4

20 Link40 Link

Node1

10 Link

Node3

20 LinkLink NULL

ptr

prevptr

Head_Pointer

Node2

30 Link

Node1

10 Link

Node4

40 LinkLink NULL

Head_Pointer

Node2

30 Link

Node1

10 Link

Node3

20 LinkLink

Ptr

prevptr

Node4

20 Link40 Link NULL

 CH 6: Linked List 6.34

if(prevptr->data != Value)
printf("The node after which deletion will be done is not found.\n\n");

else if(prevptr->link == NULL)
printf("The deletion of a node after the last node is not possible.\n\n");

else
{
 prevptr->link = ptr->link;
 free(ptr);
 printf("The node has been deleted after the specified node successfully.");
}

}

prevptr = NULL;
ptr = NULL;
return headptr;

}

13. Delete a specific node of a singly linked list – In this case a value is specified by a user
and that value is searched among the nodes of the linked list. If the value is found in the data
part of any node, that particular node will be removed from the linked list. Here two error
cases occurs.
1) When the linked list is completely empty, there will be no node for deletion.
2) When the specified value is not found in the data part of any node of the linked list.

Here two cases will happen for deleting a particular node.
1) When first node is selected for deletion, the algorithm of “deletion at the beginning of the
linked list” is applied.
2) When any other node except the first node is chosen for removal, the other procedure is
applied.

Algorithm to delete a specific node in a singly linked list:

Step 1: Start

Step 2: Set ptr = Head_Pointer

Step 3: Set prevptr = Head_Pointer

Step 4: Input Value of a node which will be deleted

Step 5: If ptr = NULL (Condition for empty linked list), then
a) Print “The linked list is empty”.
Otherwise
b) If Head_Pointer → data = Data [Condition for matching Data in 1st node], then

i) Delete the node at the beginning of the linked list

 CH 6: Linked List 6.35

Otherwise
ii) Repeat iii) and iv) while ptr ≠ NULL and ptr→data ≠ Value

[Loop for traversal of nodes]
iii) Set prevptr = ptr
iv) Set ptr = ptr → link
v) If ptr = NULL, then

1. Print “The specified node which will be deleted is not found.”.
 Otherwise

2. Set prevptr→link = ptr→link
3. Remove the node pointed by ptr
4. Print “The specified node has been deleted successfully.”.

 [End of If-Else (v)]
 [End of If-Else (b)]

 [End of If-Else (Step 5)]

Step 6: Set prevptr = NULL

Step 7: Set ptr = NULL

Step 8: Stop

In this algorithm the same procedure is used to delete a node at the beginning of the linked
list when the data value of the first node is selected for deletion. Therefore the same pictorial
representation of deletion at the beginning of the linked list is not shown here. Only the step
by step demonstration of the part where any other node except the first node is deleted is
represented in the following table.

Steps Statements Linked List after the execution of the statement

Initially ptr = Head_Pointer

prevptr = Head_Pointer

Traversal of
Nodes

Value = 20

prevptr = ptr

ptr = ptr → link

prevptr = ptr

ptr = ptr → link

prevptr → link = ptr → link

Finally Remove the node pointed by ptr
[free(ptr)]

ptr = NULL prevptr = NULL

Head_Pointer

Node2

30 Link

Node4

20 Link40 Link

Node1

10 Link

Node3

20 LinkLink NULL

ptr

prevptr

Head_Pointer

Node2

30 Link

Node4

20 Link40 Link

Node1

10 Link

Node3

20 LinkLink NULL

ptr

prevptr

Head_Pointer

Node2

30 Link

Node4

20 Link40 Link

Node1

10 Link

Node3

20 LinkLink NULL

ptr

prevptr

Head_Pointer

Node2

30 Link

Node1

10 Link

Node4

40 LinkLink NULL

Head_Pointer

Node2

30 Link

Node1

10 Link

Node3

20 LinkLink

Ptr

prevptr

Node4

20 Link40 Link NULL

 CH 6: Linked List 6.36

User defined function in C to delete a specific node in a singly linked list

struct node *DeleteNode(struct node *headptr)
{

struct node *ptr = headptr, *prevptr = headptr;

 printf(“Enter the value of a node which will be deleted: “);
 scanf(“%d”, &Value);

if(ptr == NULL)
{

printf("The linked list is empty.\n\n");
}
else if(headptr->data == Value)
{

headptr = DeleteAtStart(headptr);
}
else
{

while(ptr != NULL && ptr->data != Value)
{

prevptr = ptr;
ptr = ptr->link;

}

if(ptr == NULL)
printf("The specified node which will be deleted is not found.\n\n");

else
{

prevptr->link = ptr->link;
free(ptr);
printf("The specified node has been deleted successfully.\n\n");

}

}

prevptr = NULL;
ptr = NULL;
return headptr;

}

14. Delete a node at a specific position of a singly linked list – Here a specific position like
1st, 2nd, 3rd etc is given by a user and the particular node at that given position will be deleted
from the linked list.

Two error cases may happen in this case.
1) When the linked list is completely empty.

 CH 6: Linked List 6.37

2) When the given position is not valid for a particular linked list. For example – if 0 th

position or 5th position is given for a linked list with 4 nodes, then no node is present at the 0th

position or at the 5th position. Here these positions will be considered as invalid.

In addition to this, two situations for deletion of a node may occur.
1) If the 1st position is given by a user, then the same algorithm to delete a node at the
beginning of the linked list will be followed.
2) If any other position except 1st position is given, then another procedure will be followed.

Algorithm to delete a node at a specific position in a singly linked list:

Step 1: Start

Step 2: Set ptr = Head_Pointer

Step 3: Set prevptr = Head_Pointer

Step 4: Input Position where a node will be deleted

Step 5: Count the number of nodes and store that count into the variable NoOfNodes.

Step 6: If ptr = NULL (Condition for empty linked list), then
a) Print “The linked list is empty”.
Otherwise
b) If Position < 1 or Position > NoOfNodes, then

i) Print “The specified position is wrong”.
Otherwise
ii) If Position = 1 [Condition for 1st node selection], then

1. Delete the node at the beginning of the linked list
Otherwise
2. Set i = 1
3. Repeat 4. and 5. while i < Position

[Loop for traversal of nodes]
4. Set prevptr = ptr
5. Set ptr = ptr → link
6. Set prevptr→link = ptr→link
7. Remove the node pointed by ptr
8. Print “The node at the specified position has been deleted successfully”.

 [End of If-Else (ii)]
 [End of If-Else (b)]

 [End of If-Else (Step 6)]

Step 7: Set prevptr = NULL

Step 8: Set ptr = NULL

Step 9: Stop

 CH 6: Linked List 6.38

Steps Statements Linked List after the execution of the statement

Initially ptr = Head_Pointer

prevptr = Head_Pointer

Position = 3 NoOfNodes = 4

Traversal of
Nodes

Position = 3

i = 1
i < Position is satisfied

prevptr = ptr
ptr = ptr → link

i = 2
i < Position is satisfied

prevptr = ptr
ptr = ptr → link

prevptr → link = ptr → link

Finally Remove the node pointed by ptr
[free(ptr)]

ptr = NULL prevptr = NULL

User defined function in C to delete a node at a specific position in a singly linked list

struct node *DeleteAtPos(struct node *headptr)
{

struct node *ptr = headptr, *prevptr = headptr;
int i, NoOfNodes;

NoOfNodes = CountNodes(headptr);

 printf(“Enter the position where a node will be deleted: “);
 scanf(“%d”, &Position);

if(ptr == NULL)
{

printf("The linked list is empty.\n\n");
}

Head_Pointer

Node2

30 Link

Node4

20 Link40 Link

Node1

10 Link

Node3

20 LinkLink NULL

ptr

prevptr

Head_Pointer

Node2

30 Link

Node4

20 Link40 Link

Node1

10 Link

Node3

20 LinkLink NULL

ptr

prevptr

Head_Pointer

Node2

30 Link

Node4

20 Link40 Link

Node1

10 Link

Node3

20 LinkLink NULL

ptr

prevptr

Head_Pointer

Node2

30 Link

Node4

20 Link40 Link

Node1

10 Link

Node3

20 LinkLink NULL

ptr

prevptr

Head_Pointer

Node2

30 Link

Node1

10 Link

Node3

20 LinkLink

Ptr

prevptr

Node4

20 Link40 Link NULL

Head_Pointer

Node2

30 Link

Node1

10 Link

Node4

40 LinkLink NULL

 CH 6: Linked List 6.39

else if(Position<1 || Position > NoOfNodes)
{

printf("The specified position is wrong.\n\n");
}
else if(Position == 1)
{

headptr = DeleteAtStart(headptr);
}
else
{

for(i=1; i<Position; i++)
{

prevptr = ptr;
ptr = ptr->link;

}

prevptr->link = ptr->link;
free(ptr);
printf("The node at the specified position has been deleted successfully.\n\n");

}

prevptr = NULL;
ptr = NULL;
return headptr;

}

In the above discussion fourteen different operations on singly linked list have been explained
with the help of algorithms and the corresponding pictorial representation. All these
operations are combined in a single C program and implemented using different user-defined
functions which are already given in the previous sections. The fourteen different operations
along with the user-defined functions are given below for recapitulation.

SL Operations applied on singly linked list User-defined functions

1 Creating a singly linked list CreateNode()

2 Displaying the data of all nodes in a singly linked list DisplayNodes()

3 Counting the number of nodes in a singly linked list CountNodes()

4 Insert a node at the beginning of a singly linked list InsertAtStart()

5 Insert a node at the end of a singly linked list InsertAtLast()

6 Insert a node before a specific node in a singly linked list InsertBeforeNode()

7 Insert a node after a specific node in a singly linked list InsertAfterNode()

8 Insert a node at a specific position of a singly linked list InsertAtPos()

9 Delete a node at the beginning of a singly linked list DeleteAtStart()

10 Delete a node at the end of a singly linked list DeleteAtLast()

 CH 6: Linked List 6.40

SL Operations applied on singly linked list User-defined functions

11 Delete a node before a specific node in a singly linked list DeleteBeforeNode()

12 Delete a node after a specific node in a singly linked list DeleteAfterNode()

13 Delete a specific node of a singly linked list DeleteNode()

14 Delete a node at a specific position of a singly linked list DeleteAtPos()

C Program to create a singly linked list, implement different insertion operations and different
deletion operations

#include<stdio.h>
#include<stdlib.h>

struct node
{

int data;
struct node *link;

};

struct node *CreateNode();
struct node *InsertAtEmpty(int);
struct node *InsertAtEnd(struct node *,int);
void DisplayNodes(struct node *);
int CountNodes(struct node *);
struct node *FreeNode(struct node *);
struct node *InsertAtStart(struct node *,int);
struct node *InsertAtLast(struct node *,int);
struct node *InsertBeforeNode(struct node *,int ,int);
struct node *InsertAfterNode(struct node *,int ,int);
struct node *InsertAtPos(struct node *,int ,int);
struct node *DeleteAtStart(struct node *);
struct node *DeleteAtLast(struct node *);
struct node *DeleteBeforeNode(struct node *,int);
struct node *DeleteAfterNode(struct node *,int);
struct node *DeleteNode(struct node *,int);
struct node *DeleteAtPos(struct node *,int);

int main()
{

struct node *head = NULL;
int option, Value, Data, Position, NodeCount;
system("clear");

while(1)
{

printf("0: Exit\n");
printf("1: Create singly linked list\n");
printf("2: Display all nodes of the singly linked list\n");
printf("3: Display no. of nodes in the singly linked list\n");

 CH 6: Linked List 6.41

printf("4: Insert a node at the starting of the singly linked list\n");
printf("5: Insert a node at the end of the singly linked list\n");
printf("6: Insert a node before a specific node of the singly linked list\n");
printf("7: Insert a node after a specific node of the singly linked list\n");
printf("8: Insert a node at a specific position of the singly linked list\n");
printf("9: Delete a node at the starting of the singly linked list\n");
printf("10: Delete a node at the end of the singly linked list\n");
printf("11: Delete a node before a specific node of the singly linked list\n");
printf("12: Delete a node after a specific node of the singly linked list\n");
printf("13: Delete a specific node of the singly linked list\n");
printf("14: Delete a node at a specific position of the singly linked list\n");
printf("15: Delete all nodes of the singly linked list\n");
printf("\n");
printf("Enter your option: ");
scanf("%d", &option);

switch(option)
{

case 0: head = FreeNode(head);
exit(1);

case 1: head = CreateNode();
break;

case 2: DisplayNodes(head);
break;

case 3: NodeCount = CountNodes(head);
printf("No. of nodes in the linked list: %d\n\n", NodeCount);
break;

case 4: printf("Enter the data of a new node to be inserted at the starting: ");
scanf("%d", &Data);
head = InsertAtStart(head, Data);
break;

case 5: printf("Enter the data of a new node to be inserted at the last: ");
scanf("%d", &Data);
head = InsertAtLast(head, Data);
break;

case 6: printf("Enter the value of a node before which a new node will be
 inserted: ");

scanf("%d", &Value);
printf("Enter the data of the new node to be inserted before the

 specified node: ");
scanf("%d", &Data);
head = InsertBeforeNode(head, Value, Data);
break;

case 7: printf("Enter the value of a node after which a new node will be
 inserted: ");

 CH 6: Linked List 6.42

scanf("%d", &Value);
printf("Enter the data of the new node to be inserted after the

 specified node: ");
scanf("%d", &Data);
head = InsertAfterNode(head, Value, Data);
break;

case 8: printf("Enter the position where a node will be inserted: ");
scanf("%d", &Position);
printf("Enter the data of the node to be inserted at the specified

 position: ");
scanf("%d", &Data);
head = InsertAtPos(head, Position, Data);
break;

case 9: head = DeleteAtStart(head);
break;

case 10: head = DeleteAtLast(head);
break;

case 11: printf("Enter the value of a node before which a node will be
 deleted: ");

 scanf("%d", &Value);
 head = DeleteBeforeNode(head, Value);
 break;

case 12: printf("Enter value of a node after which a node will be deleted: ");
 scanf("%d", &Value);
 head = DeleteAfterNode(head, Value);
 break;

case 13: printf("Enter the value of a node which will be deleted: ");
 scanf("%d", &Value);
 head = DeleteNode(head, Value);
 break;

case 14: printf("Enter the position where the node will be deleted: ");
 scanf("%d", &Position);
 head = DeleteAtPos(head, Position);
 break;

case 15: head = FreeNode(head);
 printf("All nodes of the singly linked list have been deleted

 successfully.\n\n");
 break;

default: printf("Wrong Option\n");
 break;

}
}

 CH 6: Linked List 6.43

return 0;
}

struct node *CreateNode()
{

struct node *headptr = NULL, *ptr;
int i, n, Data;

printf("Enter the no. of nodes to be created in the singly linked list: ");
scanf("%d", &n);

for(i=0; i<n; i++)
{

printf("Enter Data%d: ", i+1);
scanf("%d", &Data);

if(i == 0)
{

headptr = InsertAtEmpty(Data);
ptr = headptr;

}
else
{

ptr = InsertAtEnd(ptr, Data);
}

}

printf("Singly Linked list has been created successfully.\n\n");

ptr = NULL;
return headptr;

}

struct node *InsertAtEmpty(int Data)
{

struct node *headptr;
headptr = (struct node *)malloc(sizeof(struct node));

headptr->data = Data;
headptr->link = NULL;

return headptr;
}

struct node *InsertAtEnd(struct node *ptr,int Data)
{

ptr->link = (struct node *)malloc(sizeof(struct node));
ptr->link->data = Data;
ptr->link->link = NULL;

return ptr->link;
}

 CH 6: Linked List 6.44

void DisplayNodes(struct node *ptr)
{

printf("The singly linked list is given below:\n");

while(ptr != NULL)
{

printf("%-5d", ptr->data);
ptr = ptr->link;

}

printf("\n\n");

ptr = NULL;
}

int CountNodes(struct node *ptr)
{

int count = 0;

while(ptr != NULL)
{

count++;
ptr = ptr->link;

}

ptr = NULL;

return count;
}

struct node *InsertAtStart(struct node *headptr,int Data)
{

struct node *ptr;

ptr = (struct node *)malloc(sizeof(struct node));
ptr->data = Data;
ptr->link = headptr;
headptr = ptr;

printf("A new node has been inserted at the starting successfully.\n\n");

ptr = NULL;

return headptr;
}

 CH 6: Linked List 6.45

struct node *InsertAtLast(struct node *headptr,int Data)
{

struct node *ptr = headptr;

if(ptr == NULL)
{

headptr = InsertAtEmpty(Data);
}
else
{

while(ptr->link != NULL)
ptr = ptr->link;

ptr = InsertAtEnd(ptr, Data);
}

printf("A new node has been inserted at the end successfully.\n\n");

ptr = NULL;
return headptr;

}

struct node *InsertBeforeNode(struct node *headptr,int Value,int Data)
{

struct node *ptr = headptr, *newnodeptr;

if(ptr->data == Value)
{

headptr = InsertAtStart(headptr, Data);
}
else
{

while(ptr->link != NULL && ptr->link->data != Value)
ptr = ptr->link;

if(ptr->link == NULL)
printf("The node before which insertion will be done is not found.\n\n");

else
{

newnodeptr = (struct node *)malloc(sizeof(struct node));
newnodeptr->data = Data;
newnodeptr->link = ptr->link;
ptr->link = newnodeptr;
printf("A new node has been inserted before the specified node.\n\n");

}
}

newnodeptr = NULL;
ptr = NULL;

return headptr;
}

 CH 6: Linked List 6.46

struct node *InsertAfterNode(struct node *headptr,int Value,int Data)
{

struct node *ptr = headptr, *newnodeptr;

while(ptr != NULL && ptr->data != Value)
ptr = ptr->link;

if(ptr == NULL)
printf("The node after which insertion will be done is not found.\n\n");

else
{

newnodeptr = (struct node *)malloc(sizeof(struct node));
newnodeptr->data = Data;
newnodeptr->link = ptr->link;
ptr->link = newnodeptr;
printf("A new node has been inserted after the specified node successfully.\n\n");

}

newnodeptr = NULL;
ptr = NULL;
return headptr;

}

struct node *InsertAtPos(struct node *headptr,int Position,int Data)
{

struct node *ptr = headptr, *newnodeptr;
int i, NoOfNodes;
NoOfNodes = CountNodes(headptr);

if(Position < 1 || Position > NoOfNodes + 1)
{

printf("The specified position is wrong.\n\n");
}
else if(Position == 1)
{

headptr = InsertAtStart(headptr, Data);
}
else
{

for(i=1; i<Position - 1; i++)
ptr = ptr->link;

newnodeptr = (struct node *)malloc(sizeof(struct node));
newnodeptr->data = Data;
newnodeptr->link = ptr->link;
ptr->link = newnodeptr;
printf("A new node has been inserted at a specific position successfully.\n\n");

}
newnodeptr = NULL;
ptr = NULL;
return headptr;

}

 CH 6: Linked List 6.47

struct node *DeleteAtStart(struct node *headptr)
{

struct node *ptr = headptr;

if(ptr == NULL)
{

printf("The linked list is empty.\n\n");
}
else
{

headptr = ptr->link;
free(ptr);
printf("The node has been deleted at the starting successfully.\n\n");

}
ptr = NULL;
return headptr;

}

struct node *DeleteAtLast(struct node *headptr)
{

struct node *ptr = headptr, *prevptr = headptr;

if(ptr == NULL)
{

printf("The linked list is empty.\n\n");
}
else
{

while(ptr->link != NULL)
{

prevptr = ptr;
ptr = ptr->link;

}

prevptr->link = NULL;
if(ptr == headptr)

headptr = NULL;
free(ptr);
printf("The node has been deleted at the end successfully.\n\n");

}

prevptr = NULL;
ptr = NULL;
return headptr;

}

 CH 6: Linked List 6.48

struct node *DeleteBeforeNode(struct node *headptr,int Value)
{

struct node *ptr = headptr, *prevptr = headptr;

if(ptr == NULL)
{

printf("The linked list is empty.\n\n");
}
else if(headptr->data == Value)
{

printf("The deletion of a node before the first node is not possible.\n\n");
}
else if(ptr->link != NULL && ptr->link->data == Value)
{

headptr = DeleteAtStart(headptr);
}
else
{

while(ptr->link != NULL && ptr->link->data != Value)
{

prevptr = ptr;
ptr = ptr->link;

}

if(ptr->link == NULL)
printf("The node before which deletion will be done is not found.\n\n");

else
{

prevptr->link = ptr->link;

free(ptr);
printf("The node has been deleted before the specified node.\n\n");

}

}

prevptr = NULL;
ptr = NULL;
return headptr;

}

 CH 6: Linked List 6.49

struct node *DeleteAfterNode(struct node *headptr,int Value)
{

struct node *ptr = headptr, *prevptr = headptr;

if(ptr == NULL)
{

printf("The linked list is empty.\n\n");
}
else
{

ptr = ptr->link;

while(ptr != NULL && prevptr->data != Value)
{

prevptr = ptr;
ptr = ptr->link;

}

if(prevptr->data != Value)
printf("The node after which deletion will be done is not found.\n\n");

else if(prevptr->link == NULL)
printf("The deletion of a node after the last node is not possible.\n\n");

else
{

prevptr->link = ptr->link;
free(ptr);
printf("The node has been deleted after the specified node.\n\n");

}

}

prevptr = NULL;
ptr = NULL;
return headptr;

}

struct node *DeleteNode(struct node *headptr,int Value)
{

struct node *ptr = headptr, *prevptr = headptr;

if(ptr == NULL)
{

printf("The linked list is empty.\n\n");
}
else if(headptr->data == Value)
{

headptr = DeleteAtStart(headptr);
}
else
{

 CH 6: Linked List 6.50

while(ptr != NULL && ptr->data != Value)
{

prevptr = ptr;
ptr = ptr->link;

}
if(ptr == NULL)

printf("The specified node which will be deleted is not found.\n\n");
else
{

prevptr->link = ptr->link;
free(ptr);
printf("The specified node has been deleted successfully.\n\n");

}
}
prevptr = NULL;
ptr = NULL;
return headptr;

}

struct node *DeleteAtPos(struct node *headptr,int Position)
{

struct node *ptr = headptr, *prevptr = headptr;
int i, NoOfNodes;
NoOfNodes = CountNodes(headptr);

if(ptr == NULL)
{

printf("The linked list is empty.\n\n");
}
else if(Position<1 || Position > NoOfNodes)
{

printf("The specified position is wrong.\n\n");
}
else if(Position == 1)
{

headptr = DeleteAtStart(headptr);
}
else
{

for(i=1; i<Position; i++)
{

prevptr = ptr;
ptr = ptr->link;

}
prevptr->link = ptr->link;
free(ptr);
printf("The node at the specified position has been deleted successfully.\n\n");

}
prevptr = NULL;
ptr = NULL;
return headptr;

}

 CH 6: Linked List 6.51

struct node *FreeNode(struct node *headptr)
{

struct node *ptr;

while(headptr != NULL)
{

ptr = headptr->link;
free(headptr);
headptr = ptr;

}

headptr = NULL;
ptr = NULL;
return headptr;

}

2) Doubly Linked List – A doubly linked list is a special type of linked list where a node
contains some data, one pointer to the next node and another pointer to the previous node.
Here the pointer to the next node holds the address of the successor node and the pointer to
the previous node holds the address of the predecessor node of the present node in the doubly
linked list. Due to the presence of the previous pointer as well as next pointer it is possible to
traverse in both directions through the doubly linked list. That means we can move from 1st

node to 2nd node and 2nd node to 1st node as well. A doubly linked list is shown in Fig.6.3 for
realization of the structure of a doubly linked list.

Fig.6.3: Pictorial view of a doubly linked list with 4 nodes

Like singly linked list the starting node of the doubly linked list is always pointed by a
pointer called head pointer of the linked list. Here the pointer pointing to the next node is
designated as ‘next’ and the pointer pointing to the previous node is denoted as ‘prev’ in the
program. Hence the pointer next is made NULL for the last node and the pointer prev is made
NULL for the first node in case of a doubly linked list. Moreover if the head pointer is
NULL, then it implies that the doubly linked list is empty.

 CH 6: Linked List 6.52

Declaring a doubly linked list – We know that every node of a doubly linked list has three
parts – i) data part, ii) a pointer to point the next node and iii) a pointer to point the previous
node. To implement the construction of a node in a doubly linked list a structure comprising
of these members is declared in C language as given below.

struct node
{

struct node *prev;
int data;
struct node *next;

};

1. Creating a doubly linked list – Using this function a user can create a doubly linked list
with n no. of nodes according to his requirement where n is given by the user. After
completion of this operation a doubly linked list will be generated with n no. of nodes. The
algorithm to create n no. of nodes in a doubly linked list is given below.

Algorithm of doubly linked list creation:

Step 1: Start

Step 2: Set Head_Pointer = NULL

Step 3: Input n for number of nodes to be created

Step 4: Set i = 0

Step 5: Repeat Step 6 to Step 8 while i < n

Step 6: Input Data to be stored into the node

Step 7: If i = 0 (for first node creation), then
a) Create a new node pointed by New_Node_Pointer
 Set New_Node_Pointer → prev = NULL
 Set New_Node_Pointer → data = Data
 Set New_Node_Pointer → next = NULL
 Set Head_Pointer = New_Node_Pointer
 Set Ptr = Head_Pointer
Otherwise
b) Create a new node pointed by New_Node_Pointer
 Set New_Node_Pointer → data = Data
 Set ptr → next = New_Node_Pointer
 Set ptr → next → prev = ptr
 Set ptr → next → next = NULL
 Set ptr = ptr → next
[End of If-Else (Step 7)]

Step 8: Set i = i + 1

 CH 6: Linked List 6.53

Step 9: Print “Doubly Linked List has been created successfully”.

Step 10: Set ptr = NULL

Step 11: Set New_Node_Pointer = NULL

Step 12: Stop

User defined function in C to create a doubly linked list with n no. of nodes

struct node *CreateNode()
{

struct node *headptr = NULL, *ptr;
int i, n, Data;

printf("Enter the no. of nodes to be created in the doubly linked list: ");
scanf("%d", &n);

for(i=0; i<n; i++)
{

printf("Enter Data%d: ", i+1);
scanf("%d", &Data);
if(i == 0)
{

headptr = InsertAtEmpty(Data);
ptr = headptr;

}
else
{

ptr = InsertAtEnd(ptr, Data);
}

}
printf("Doubly Linked list has been created successfully.\n\n");
ptr = NULL;
return headptr;

}

struct node *InsertAtEmpty(int Data)
{

struct node *headptr;
headptr = (struct node *)malloc(sizeof(struct node));

headptr->prev = NULL;
headptr->data = Data;
headptr->next = NULL;

return headptr;
}

 CH 6: Linked List 6.54

struct node *InsertAtEnd(struct node *ptr,int Data)
{

ptr->next = (struct node *)malloc(sizeof(struct node));
ptr->next->data = Data;
ptr->next->prev = ptr;
ptr->next->next = NULL;

return ptr->next;
}

2. Displaying the data of all nodes in a doubly linked list – This operation displays/ prints
the data of all nodes in a doubly linked list in forward direction i.e. from starting node to last
node. In this case a temporary pointer is taken to point the starting node or first node initially
and this temporary pointer prints the data of every node in the liked list while traversing from
first node to the last node.

Algorithm of displaying the data of all nodes in doubly linked list:

Step 1: Start

Step 2: Set ptr = Head_Pointer

Step 3: Repeat Step 4 to Step 5 while ptr ≠ NULL

Step 4: Print ptr → data

Step 5: Set ptr = ptr → next

Step 6: Set ptr = NULL

Step 7: Stop

In the above algorithm all the nodes of a doubly linked list have been printed in forward
direction from first node to the last node using the next pointer. If all the nodes are displayed
properly, then it is clear that all the nodes of the doubly linked list are connected through the
next link of each node. But it is not proved that the connections between the nodes are
established or not with the help of prev link (previous pointer of a node). To check this the
data of all nodes should be printed in reverse direction as well i.e. from the last node to the
first node. Therefore these two operations - i) displaying all nodes in forward direction and ii)
displaying all nodes in reverse direction have been incorporated in the same Display function
in C language for a doubly linked list.

 CH 6: Linked List 6.55

User defined function in C to display the data of all nodes in a doubly linked list

void DisplayNode(struct node *ptr)
{

printf("The Doubly linked list is given below:\n");

while(ptr != NULL) //While loop for displaying all nodes in forward direction
{

printf("%-5d", ptr->data);
if(ptr->next == NULL)

break;
ptr = ptr->next;

}

printf("\n\n");

printf("The Doubly linked list is given below in reverse order:\n");

while(ptr != NULL) //While loop for displaying all nodes in reverse direction
{

printf("%-5d", ptr->data);
if(ptr->prev == NULL)

break;
ptr = ptr->prev;

}

printf("\n\n");

ptr = NULL;
}

3. Counting the number of nodes in a doubly linked list – This operation counts the
number of nodes in a doubly linked list. Here a variable ‘count’ is initialized to zero and
incremented by one each time the pointer ptr traverses the successive nodes in the linked list.

Algorithm of counting the number of nodes in doubly linked list:

Step 1: Start

Step 2: Set count = 0

Step 3: Set ptr = Head_Pointer

Step 4: Repeat Step 5 to Step 6 while ptr ≠ NULL

Step 5: Set count = count + 1

 CH 6: Linked List 6.56

Step 6: Set ptr = ptr → next

Step 7: Print count to display the number of nodes in the doubly linked list

Step 8: Set ptr = NULL

Step 9: Stop

User defined function in C to count the number of nodes in a doubly linked list

int CountNodes(struct node *ptr)
{

int count = 0;

while(ptr != NULL)
{

count++;
ptr = ptr->next;

}

return count;
}

4. Insert a node at the beginning of a doubly linked list – Here a new node will be inserted
at the beginning of a doubly linked list. After the insertion the new node becomes the starting
node or the first node of the linked list. Therefore the Head_Pointer must be shifted from the
second node to the first node to point at the beginning of the linked list.

Algorithm to insert a node at the beginning of a doubly linked list:

Step 1: Start

Step 2: Input Data to be stored into the new node

Step 3: Create a new node pointed by a pointer ‘ptr’

Step 4: Set ptr → data = Data

Step 5: Set ptr → prev = NULL

Step 6: Set ptr → next = Head_Pointer

Step 7: Set Head_Pointer → prev = ptr

Step 8: Set Head_Pointer = ptr

Step 9: Print “A new node has been inserted at the starting successfully”.

 CH 6: Linked List 6.57

Step 10: Set ptr = NULL

Step 11: Stop

User defined function in C to insert a node at the beginning of a doubly linked list

struct node *InsertAtStart(struct node *headptr,int Data)
{

struct node *ptr;

ptr = (struct node *)malloc(sizeof(struct node));
ptr->prev = NULL;
ptr->data = Data;
ptr->next = headptr;
headptr->prev = ptr;
headptr = ptr;

printf("A new node has been inserted at the starting successfully.\n\n");

ptr = NULL;

return headptr;
}

5. Insert a node at the end of a doubly linked list – This operation inserts a newly created
node at the end of a doubly linked list i.e. it add the new node after the last node of the
existing linked list. After the insertion at the end, the new node becomes the last node of the
linked list and that’s why the new node must be terminated with NULL using the next pointer.

Algorithm to insert a node at the end of a doubly linked list:

Step 1: Start

Step 2: Input Data to be stored into the new node

Step 3: Set ptr = Head_Pointer

Step 4: If ptr = NULL, then
a) Create a new node pointed by Head_Pointer
 Set Head_Pointer → data = Data
 Set Head_Pointer → prev = NULL
 Set Head_Pointer → next = NULL

Otherwise
b) Repeat 1. while ptr → next ≠ NULL

1. Set ptr = ptr → next

 CH 6: Linked List 6.58

 Create a new node pointed by ptr → next
 Set ptr → next → data = Data
 Set ptr → next → prev = ptr
 Set ptr → next → next = NULL
 Set ptr = ptr → next
 [End If-Else Step 4]

Step 5: Print “A new node has been inserted at the end successfully”.

Step 6: Set ptr = NULL

Step 7: Stop

User defined function in C to insert a node at the end of a doubly linked list

struct node *InsertAtLast(struct node *headptr,int Data)
{

struct node *ptr = headptr;
if(ptr == NULL)
{

headptr = InsertAtEmpty(Data);
ptr = headptr;

}
else
{

while(ptr->next != NULL)
ptr = ptr->next;

ptr = InsertAtEnd(ptr, Data);
}
printf("A new node has been inserted at the end successfully.\n\n");

ptr = NULL;
return headptr;

}
struct node *InsertAtEmpty(int Data)
{

struct node *headptr;
headptr = (struct node *)malloc(sizeof(struct node));

headptr->prev = NULL;
headptr->data = Data;
headptr->next = NULL;

return headptr;
}

 CH 6: Linked List 6.59

struct node *InsertAtEnd(struct node *ptr,int Data)
{

ptr->next = (struct node *)malloc(sizeof(struct node));
ptr->next->data = Data;
ptr->next->prev = ptr;
ptr->next->next = NULL;

return ptr->next;
}

6. Insert a node before a specific node in a doubly linked list – This function will insert a
new node just before another node which is specified by the user. Here we have to consider
two situations.

In first situation the specified node is the first node in the doubly linked list. So the insertion
of a new node before the first node is basically the insertion of a new node at the beginning of
the link list, which has been already discussed. In second situation when the specified node is
not first node, we have to insert the newly created node in between the specified node and the
node just before the specified node. Except these two situations, there is another situation
where the specified node is not found in the linked list. In that case an error message will be
printed.

Algorithm of inserting a node before a specific node in a doubly linked list:

Step 1: Start

Step 2: Set ptr = Head_Pointer

Step 3: Input Value of a node before which a new node will be inserted

Step 4: Input Data to be stored into the new node

Step 5: If ptr → data = Value [Condition of finding Value in 1st node], then
a) Create a new node pointed by New_Node_Pointer
 Set New_Node_Pointer → prev = NULL
 Set New_Node_Pointer → data = Data
 Set New_Node_Pointer → next = Head_Pointer
 Set Head_Pointer → prev = New_Node_Pointer
 Set Head_Pointer = New_Node_Pointer
Otherwise
b) Repeat (c) while ptr → ≠ NULL and ptr → data ≠ Value
c) Set ptr = ptr → next

d) If ptr = NULL, then
i) Print “The node before which insertion will be done is not found”.
Otherwise
ii) Create a new node pointed by New_Node_Pointer

 Set New_Node_Pointer → data = Data

 CH 6: Linked List 6.60

Set New_Node_Pointer → next = ptr
Set New_Node_Pointer → prev = ptr → prev
Set ptr → prev = New_Node_Pointer
Set New_Node_Pointer → prev → next = New_Node_Pointer
Print “A new node has been inserted before the specified node”.

[End of If-Else (d)]
[End of If-Else (Step 5)]

Step 6: Set ptr = NULL

Step 7: Set New_Node_Pointer = NULL

Step 8: Stop

User defined function in C to insert a node before a specific node in a doubly linked list

struct node *InsertBeforeNode(struct node *headptr,int Value,int Data)
{

struct node *ptr = headptr, *newnode;
if(ptr->data == Value)

headptr = InsertAtStart(headptr, Data);
else
{

while(ptr != NULL && ptr->data != Value)
ptr = ptr->next;

if(ptr == NULL)
printf("The node before which insertion will be done is not found\n");

else
{

newnode = (struct node *)malloc(sizeof(struct node));
newnode->data = Data;
newnode->next = ptr;
newnode->prev = ptr->prev;
ptr->prev = newnode;
newnode->prev->next = newnode;

printf("A new node has been inserted before the specified node
 successfully.\n\n");

}
}
newnode = NULL;
ptr = NULL;
return headptr;

}

 CH 6: Linked List 6.61

struct node *InsertAtStart(struct node *headptr,int Data)
{

struct node *ptr;

ptr = (struct node *)malloc(sizeof(struct node));
ptr->prev = NULL;
ptr->data = Data;
ptr->next = headptr;
headptr->prev = ptr;
headptr = ptr;

printf("A new node has been inserted at the starting successfully.\n\n");

ptr = NULL;

return headptr;
}

7. Insert a node after a specific node in a doubly linked list – This operation will insert a
new node just after another node which is specified by the user. Here at first the node with the
specified value is searched through the traversal of the linked list and if the specified node is
found, a new node with entered data will be inserted after it, otherwise an error message will
be displayed.

Algorithm of inserting a node after a specific node in a singly linked list:

Step 1: Start

Step 2: Set ptr = Head_Pointer

Step 3: Input Value of a node after which a new node will be inserted

Step 4: Input Data to be stored into the new node

Step 5: Repeat Step 6 while ptr ≠ NULL and ptr → data ≠ Value

Step 6: Set ptr = ptr → next

Step 7: If ptr = NULL, then
a) Print “The node after which insertion will be done is not found”.
Otherwise
b) Create a new node pointed by New_Node_Pointer
 Set New_Node_Pointer → data = Data
 Set New_Node_Pointer → prev = ptr
 Set New_Node_Pointer → next = ptr → next
 Set ptr → next = New_Node_Pointer

 CH 6: Linked List 6.62

c) If New_Node_Pointer → next ≠ NULL [Condition of not being last node], then
 Set New_Node_Pointer → next → prev = New_Node_Pointer
 [End of If (c)]

d) Print “A new node has been inserted after the specified node”.
[End of If-Else (Step 7)]

Step 8: Set ptr = NULL

Step 9: Set New_Node_Pointer = NULL

Step 10: Stop

User defined function in C to insert a node after a specific node in a doubly linked list

struct node *InsertAfterNode(struct node *headptr,int Value,int Data)
{

struct node *ptr = headptr, *newnode;

while(ptr != NULL && ptr->data != Value)
ptr = ptr->next;

if(ptr == NULL)
printf("The node after which insertion will be done is not found.\n\n");

else
{

newnode = (struct node *)malloc(sizeof(struct node));
newnode->data = Data;
newnode->prev = ptr;
newnode->next = ptr->next;
ptr->next = newnode;
if(newnode->next != NULL)

newnode->next->prev = newnode;
printf("A node has been inserted after the specified node successfully\n");

}
newnode = NULL;
ptr = NULL;

return headptr;
}

8. Insert a node at a specific position of a doubly linked list – This function gives the
opportunity to insert a new node with an entered data at a specified position of a doubly
linked list. In this case the remaining part of the linked list starting from the specific position
will be shifted right and the new node will be placed at the specified position. For example –
if the specified position is 3rd in a doubly linked list of three nodes, then the new node will be
placed at 3rd position and the 3rd node of the existing linked list will be shifted right one
position to become 4th node.

 CH 6: Linked List 6.63

Algorithm of inserting a node at a specific position of a doubly linked list:

Step 1: Start

Step 2: Set ptr = Head_Pointer

Step 3: Input Position where a new node will be inserted

Step 4: Input Data to be stored into the new node

Step 5: Set NoOfNodes = Total number of nodes in the linked list

Step 6: If Position < 1 or Position > NoOfNodes + 1, then
a) Print “Entered position is Invalid”.
Otherwise
b) If Position = 1, then

i) Create a new node pointed by New_Node_Pointer
Set New_Node_Pointer → prev = NULL
Set New_Node_Pointer → data = Data
Set New_Node_Pointer → next = Head_Pointer
Set Head_Pointer → prev = New_Node_Pointer
Set Head_Pointer = New_Node_Pointer

Otherwise
ii) Set i = 1
iii) Repeat iv) and v) while i < Position – 1
iv) Set ptr = ptr → next
v) Set i = i + 1
vi) Create a new node pointed by New_Node_Pointer

 Set New_Node_Pointer → data = Data
 Set New_Node_Pointer → prev = ptr

Set New_Node_Pointer → next = ptr → next
Set New_Node_Pointer → next = ptr → next
Set ptr → next = New_Node_Pointer

1. If New_Node_Pointer → next ≠ NULL [Condition of not being last node],
Set New_Node_Pointer → next → prev = New_Node_Pointer
[End of If (1)]

vii) Print “A new node has been inserted at a specific position”.
 [End of If-Else (b)]
[End of If-Else (Step 6)]

Step 7: Set ptr = NULL

Step 8: Set New_Node_Pointer = NULL

Step 9: Stop

 CH 6: Linked List 6.64

User defined function in C to insert a node at a specific position of a doubly linked list

struct node *InsertAtPos(struct node *headptr,int Position,int Data)
{

struct node *ptr = headptr, *newnode;
int i, NoOfNodes;

NoOfNodes = CountNodes(headptr);
if(Position < 1 || Position > NoOfNodes + 1)

printf("The specified position is wrong.\n\n");
else if(Position == 1)

headptr = InsertAtStart(headptr, Data);
else
{

for(i=1; i<Position - 1; i++)
ptr = ptr->next;

newnode = (struct node *)malloc(sizeof(struct node));
newnode->data = Data;
newnode->prev = ptr;
newnode->next = ptr->next;
ptr->next = newnode;
if(newnode->next != NULL)

newnode->next->prev = newnode;

printf("A new node has been inserted at a specific position successfully.\n");
}
newnode = NULL;
ptr = NULL;
return headptr;

}

int CountNodes(struct node *ptr)
{

int count = 0;
while(ptr != NULL)
{

count++;
ptr = ptr->next;

}
return count;

}

 CH 6: Linked List 6.65

struct node *InsertAtStart(struct node *headptr,int Data)
{

struct node *ptr;

ptr = (struct node *)malloc(sizeof(struct node));
ptr->prev = NULL;
ptr->data = Data;
ptr->next = headptr;
headptr->prev = ptr;
headptr = ptr;
printf("A new node has been inserted at the starting successfully.\n\n");

ptr = NULL;
return headptr;

}

9. Delete a node at the beginning of a doubly linked list – This operation deletes a node at
the beginning of a doubly linked list. Basically it removes the first node from the linked list.
As a result of this, the second node becomes the first node of the list. Therefore the
Head_Pointer should be shifted from the first node to the second node and then the first node
is removed from the linked list.

Algorithm to delete a node at the beginning of a doubly linked list:

Step 1: Start

Step 2: Set ptr = Head_Pointer

Step 3: If ptr = NULL (Condition for empty linked list), then
a) Print “The linked list is empty”
Otherwise
b) Set Head_Pointer = ptr → next
c) If Head_Pointer ≠ NULL (Condition for the existence of 2nd node), then
 Set Head_Pointer → prev = NULL
 [End of If (c)]
 Remove the node pointed by ptr
 Print “The node has been deleted at the starting of the linked list”
[End of If-Else (Step 3)]

Step 4: Set ptr = NULL

Step 5: Stop

 CH 6: Linked List 6.66

User defined function in C to delete a node at the beginning of a doubly linked list

struct node *DeleteAtStart(struct node *headptr)
{

struct node *ptr = headptr;

if(ptr == NULL)
printf("The linked list is empty.\n\n");

else
{

headptr = ptr->next;
if(headptr != NULL)

headptr->prev = NULL;
free(ptr);
printf("The node has been deleted at the starting successfully.\n\n");

}
ptr = NULL;
return headptr;

}

10. Delete a node at the end of a doubly linked list – In this operation the node at the end
of a doubly linked list will be removed. Here two situations may happen. In one situation, in
case of a linked list with a single node, the one and only node will be pointed by ptr, the
Head_Pointer is made NULL and finally the node is removed. In another situation, the ptr
points to the last node and ptr → prev → next is made NULL to make the previous node the
last node after the deletion. Finally the node pointed by the pointer ptr will be deleted from
the doubly linked list.

Algorithm to delete a node at the end of a doubly linked list:

Step 1: Start

Step 2: Set ptr = Head_Pointer

Step 3: If ptr = NULL (Condition for empty linked list), then
a) Print “The linked list is empty”
Otherwise
b) Repeat c) while ptr → next ≠ NULL
c) Set ptr = ptr → next

d) If ptr = Head_Pointer (Condition for single node in linked list), then
i) Set Head_Pointer = NULL
Otherwise
ii) Set ptr → prev → next = NULL
[End of If -Else (d)]

e) Remove the node pointed by ptr
f) Print “The node has been deleted at the end of the linked list”
[End of If-Else (Step 3)]

 CH 6: Linked List 6.67

Step 4: Set ptr = NULL

Step 5: Stop

In this algorithm two situations have been considered.

1) When the linked list contains a single node, the node will be pointed by ptr first, then the
Head_Pointer is made NULL and finally the starting node will be removed.

2) When the linked list has multiple nodes, the last node will be pointed by the pointer ptr and
the node before the last node will be made last node after the deletion by setting ptr → prev
→ next = NULL. Finally the node pointed by ptr is removed from the doubly linked list.

User defined function in C to delete a node at the end of a doubly linked list

struct node *DeleteAtLast(struct node *headptr)
{

struct node *ptr = headptr;

if(ptr == NULL)
{

printf("The linked list is empty.\n\n");
}
else
{

while(ptr->next != NULL)
{

ptr = ptr->next;
}

if(ptr == headptr)
headptr = NULL;

else
ptr->prev->next = NULL;

free(ptr);
printf("The node has been deleted at the end successfully.\n\n");

}

ptr = NULL;
return headptr;

}

 CH 6: Linked List 6.68

11. Delete a node before a specific node in a doubly linked list – Here three error cases and
two cases of deletion will be considered.
The three error cases are:
1) The first error case occurs when the linked list is empty.
2) The second error case occurs when the first node is selected. Obviously there will be no
node for deletion before the first node.
3) The third error case occurs when a value given by a user is not found in any node of the
linked list.

The two cases to delete a node before a specified node are given below.
1) If the value of the second node is given by a user, then obviously the first node of the
linked list will be deleted. Here the algorithm of deletion of a node at the beginning of the
linked list will be followed.
2) If the value of a node except the second node is selected, then the node just before the
specified node will be removed using another procedure.

Algorithm to delete a node before the specified node of a doubly linked list:

Step 1: Start

Step 2: Set ptr = Head_Pointer

Step 3: Input Value of a node before which a node will be deleted

Step 4: If ptr = NULL (Condition for empty linked list), then
a) Print “The linked list is empty”.
Otherwise
b) If ptr → next ≠ NULL and ptr → next → data = Value, then
 (Condition of finding Value in 2nd node)

i) Set Head_Pointer = ptr → next
ii) Set Head_Pointer → prev = NULL
Otherwise
iii) Repeat iv) while ptr ≠ NULL and ptr→data ≠ Value

[Loop for traversal of nodes]
iv) Set ptr = ptr → next
v) If ptr = NULL (Condition of Value not found), then

Print “ The node before which deletion will be done is not found”.
 Otherwise

1. If ptr = Head_Pointer (Condition of finding Value in 1st node), then
Print “The deletion of a node before the 1st node is not possible”.
Otherwise

2. Set ptr = ptr → prev
Set ptr → prev → next = ptr → next
Set ptr → next → prev = ptr → prev

 [End of If-Else (1)]
 [End of If-Else (v)]

[End of If-Else (b)]
 [End of If-Else (Step 4)]

 CH 6: Linked List 6.69

Step 5: Remove the node pointed by ptr

Step 6: Print “The node has been deleted before the specified node successfully”.

Step 7: Set ptr = NULL

Step 8: Stop

User defined function in C to delete node before the specified node of a doubly linked
list

struct node *DeleteBeforeNode(struct node *headptr,int Value)
{

struct node *ptr = headptr;

if(ptr == NULL)
printf("The linked list is empty.\n\n");

else if(ptr->next != NULL && ptr->next->data == Value)
headptr = DeleteAtStart(headptr);

else
{

while(ptr != NULL && ptr->data != Value)
ptr = ptr->next;

if(ptr == NULL)
printf("The node before which deletion will be done is not found.\n");

else if(ptr == headptr)
printf("The deletion of a node before the first node is not possible\n");

else
{

ptr = ptr->prev;
ptr->prev->next = ptr->next;
ptr->next->prev = ptr->prev;

free(ptr);
printf("The node has been deleted before the specified node

 successfully.\n\n");
}

}

ptr = NULL;
return headptr;

}

 CH 6: Linked List 6.70

struct node *DeleteAtStart(struct node *headptr)
{

struct node *ptr = headptr;

if(ptr == NULL)
{

printf("The linked list is empty.\n\n");
}
else
{

headptr = ptr->next;
if(headptr != NULL)

headptr->prev = NULL;
free(ptr);
printf("The node has been deleted at the starting successfully.\n\n");

}
ptr = NULL;
return headptr;

}

12. Delete a node after a specific node in a doubly linked list – Here three error cases will
be considered.
The three error cases are:
1) The first error case occurs when the linked list is empty.
2) The second error case occurs when the last node is selected. Obviously there will be no
node for deletion after the last node.
3) The third error case occurs when a value given by a user is not found in any node of the
linked list.

In case of removal of a node after another node, the value of the node after with a node will
be deleted is provided by a user. After successive traversal of the nodes, the node whose value
is given is pointed by a pointer ptr and the successor node is pointed by the same pointer ptr
after one traversal of one node. Now the node pointed by ptr will be removed from the doubly
linked list as per the requirement.

Algorithm to delete a node after the specified node of a doubly linked list:

Step 1: Start

Step 2: Set ptr = Head_Pointer

Step 3: Input Value of a node after which a node will be deleted

 CH 6: Linked List 6.71

Step 4: If ptr = NULL (Condition for empty linked list), then
a) Print “The linked list is empty”.
Otherwise
b) Repeat c) while ptr ≠ NULL and ptr→data ≠ Value

Loop for traversal of nodes]
c) Set ptr = ptr → next
d) If ptr = NULL (Condition of Value not found), then

i) Print “The node after which deletion will be done is not found”.
Otherwise
ii) If ptr→next = NULL (Condition of finding Value in last node), then

1. Print “The deletion of a node after the last node is not possible”.
Otherwise
2. Set ptr = ptr → next
3. Set ptr → prev → next = ptr → next
4. If ptr → next ≠ NULL (Condition of not being last node), then

A. ptr → next → prev = ptr → prev
[End of If (4)]

5. Remove the node pointed by ptr
6. Print “ The node has been deleted after the specified node”.

 [End of If-Else (ii)]
 [End of If-Else (d)]

 [End of If-Else (Step 4)]

Step 5: Set ptr = NULL

Step 6: Stop

User defined function in C to delete node after the specified node of a doubly linked list

struct node *DeleteAfterNode(struct node *headptr,int Value)
{

struct node *ptr = headptr;

if(ptr == NULL)
printf("The linked list is empty.\n\n");

else
{

while(ptr != NULL && ptr->data != Value)
ptr = ptr->next;

if(ptr == NULL)
printf("The node after which deletion will be done is not found.\n\n");

else if(ptr->next == NULL)
printf("The deletion of a node after the last node is not possible.\n\n");

 CH 6: Linked List 6.72

else
{

ptr = ptr->next;
ptr->prev->next = ptr->next;
if(ptr->next !=NULL)

ptr->next->prev = ptr->prev;

free(ptr);
printf("The node has been deleted after the specified node

 successfully.\n\n");
}

}
ptr = NULL;
return headptr;

}

13. Delete a specific node of a doubly linked list – In this case a value is specified by a user
and that value is searched among the nodes of the linked list. If the value is found in the data
part of any node, that particular node will be removed from the linked list. Here two error
cases may occur.
1) When the linked list is completely empty, there will be no node for deletion.
2) When the specified value is not found in the linked list.

Here two cases will happen for deleting a particular node.
1) When first node is selected for deletion, the algorithm of “deletion at the beginning of the
linked list” will be applied.
2) When any other node except the first node is chosen for removal, the other procedure is
applied.

Algorithm to delete a specific node in a doubly linked list:

Step 1: Start

Step 2: Set ptr = Head_Pointer

Step 3: Input Value of a node which will be deleted

Step 4: If ptr = NULL (Condition for empty linked list), then
a) Print “The linked list is empty”.
Otherwise
b) If ptr → data = Value [Condition for matching Value in 1st node], then

[Procedure to delete a node at the beginning of the linked list will be followed]
i) Set Head_Pointer = ptr → next
ii) Set Head_Pointer → prev = NULL
Otherwise
iii) Repeat iv) while ptr ≠ NULL and ptr→data ≠ Value

[Loop for traversal of nodes]
iv) Set ptr = ptr → next

 CH 6: Linked List 6.73

v) If ptr = NULL (Condition of the node not found), then
1. Print “The specified node which will be deleted is not found.”.

 Otherwise
2. Set ptr → prev → next = ptr → next
3. If ptr → next ≠ NULL

A. Set ptr → next → prev = ptr → prev
[End of If (3)]

 [End of If-Else (v)]
 [End of If-Else (b)]

 [End of If-Else (Step 4)]

Step 5: Remove the node pointed by ptr

Step 6: Print “The specified node has been deleted successfully.”.

Step 7: Set ptr = NULL

Step 8: Stop

User defined function in C to delete a specific node in a doubly linked list

struct node *DeleteNode(struct node *headptr,int Value)
{

struct node *ptr = headptr;
if(ptr == NULL)

printf("The linked list is empty.\n\n");
else if(ptr->data == Value)

headptr = DeleteAtStart(headptr);
else
{

while(ptr != NULL && ptr->data != Value)
ptr = ptr->next;

if(ptr == NULL)
printf("The specified node which will be deleted is not found.\n\n");

else
{

ptr->prev->next = ptr->next;
if(ptr->next !=NULL)

ptr->next->prev = ptr->prev;
free(ptr);
printf("The specified node has been deleted successfully.\n\n");

}
}
ptr = NULL;
return headptr;

}

 CH 6: Linked List 6.74

struct node *DeleteAtStart(struct node *headptr)
{

struct node *ptr = headptr;

if(ptr == NULL)
{

printf("The linked list is empty.\n\n");
}
else
{

headptr = ptr->next;
if(headptr != NULL)

headptr->prev = NULL;
free(ptr);
printf("The node has been deleted at the starting successfully.\n\n");

}
ptr = NULL;
return headptr;

}

14. Delete a node at a specific position of a doubly linked list – Here a specific position
like 1st, 2nd, 3rd etc is given by a user and the particular node at that given position will be
deleted from the linked list.

Two error cases may happen in this case.
1) When the linked list is completely empty.
2) When the given position is not valid for a particular linked list. For example – if 0 th

position or 5th position is given for a linked list with 4 nodes, then no node is present at the 0th

position or at the 5th position. Here these positions will be considered as invalid.

In addition to this, two situations for deletion of a node may occur.
1) If the 1st position is given by a user, then the same algorithm to delete a node at the
beginning of the linked list will be followed.
2) If any other position except 1st position is given, then another procedure will be followed.

Algorithm to delete a node at a specific position in a doubly linked list:

Step 1: Start

Step 2: Set ptr = Head_Pointer

Step 3: Input Position where a node will be deleted

Step 4: Count the number of nodes and store that count into the variable NoOfNodes.

Step 5: If ptr = NULL (Condition for empty linked list), then
a) Print “The linked list is empty”.

 CH 6: Linked List 6.75

Otherwise
b) If Position < 1 or Position > NoOfNodes, then

i) Print “The specified position is wrong”.
Otherwise
ii) If Position = 1 [Condition for 1st node selection], then
 [Procedure to delete a node at the beginning of the linked list will be followed]

1. Set Head_Pointer = ptr → next
2. Set Head_Pointer → prev = NULL
Otherwise
3. Set i = 1
4. Repeat 5. while i < Position

[Loop for traversal of nodes]
5. Set ptr → prev → next = ptr → next
6. If ptr → next ≠ NULL, then

A. Set ptr → next → prev = ptr → prev
[End of If (6)]

 [End of If-Else (ii)]
 [End of If-Else (b)]

 [End of If-Else (Step 5)]
Step 6: Remove the node pointed by ptr

Step 7: Print “The node at the specified position has been deleted successfully”.

Step 8: Set ptr = NULL

Step 9: Stop

User defined function in C to delete a node at specific position in a doubly linked list

struct node *DeleteAtPos(struct node *headptr,int Position)
{

struct node *ptr = headptr;
int i, NoOfNodes;
NoOfNodes = CountNodes(headptr);
if(ptr == NULL)

printf("The linked list is empty.\n\n");
else if(Position<1 || Position > NoOfNodes)

printf("The specified position is wrong.\n\n");
else if(Position == 1)

headptr = DeleteAtStart(headptr);
else
{

for(i=1; i<Position; i++)
ptr = ptr->next;

ptr->prev->next = ptr->next;
if(ptr->next !=NULL)

ptr->next->prev = ptr->prev;

 CH 6: Linked List 6.76

free(ptr);
printf("The node at the specified position has been deleted successfully.\n\n");

}

ptr = NULL;
return headptr;

}

int CountNodes(struct node *ptr)
{

int count = 0;

while(ptr != NULL)
{

count++;
ptr = ptr->next;

}
return count;

}

struct node *DeleteAtStart(struct node *headptr)
{

struct node *ptr = headptr;

if(ptr == NULL)
{

printf("The linked list is empty.\n\n");
}
else
{

headptr = ptr->next;
if(headptr != NULL)

headptr->prev = NULL;
free(ptr);
printf("The node has been deleted at the starting successfully.\n\n");

}
ptr = NULL;
return headptr;

}

In the above discussion fourteen different operations on doubly linked list have been
explained with the help of algorithms and the corresponding C functions. All these operations
are combined in a single C program and implemented using different user-defined functions
which are already given in the previous sections. The fourteen different operations along with
the user-defined functions are given below for recapitulation.

 CH 6: Linked List 6.77

SL Operations applied on doubly linked list User-defined functions

1 Creating a doubly linked list CreateNode()

2 Displaying the data of all nodes in a doubly linked list DisplayNodes()

3 Counting the number of nodes in a doubly linked list CountNodes()

4 Insert a node at the beginning of a doubly linked list InsertAtStart()

5 Insert a node at the end of a doubly linked list InsertAtLast()

6 Insert a node before a specific node in a doubly linked list InsertBeforeNode()

7 Insert a node after a specific node in a doubly linked list InsertAfterNode()

8 Insert a node at a specific position of a doubly linked list InsertAtPos()

9 Delete a node at the beginning of a doubly linked list DeleteAtStart()

10 Delete a node at the end of a doubly linked list DeleteAtLast()

11 Delete a node before a specific node in a doubly linked list DeleteBeforeNode()

12 Delete a node after a specific node in a doubly linked list DeleteAfterNode()

13 Delete a specific node of a doubly linked list DeleteNode()

14 Delete a node at a specific position of a doubly linked list DeleteAtPos()

C Program to create a doubly linked list, implement different insertion operations and
different deletion operations

#include<stdio.h>
#include<stdlib.h>

struct node
{

struct node *prev;
int data;
struct node *next;

};

struct node *CreateNode();
struct node *InsertAtEmpty(int);
struct node *InsertAtEnd(struct node *,int);
void DisplayNode(struct node *);
int CountNodes(struct node *);
struct node *FreeNode(struct node *);
struct node *InsertAtStart(struct node *,int);
struct node *InsertAtLast(struct node *,int);
struct node *InsertBeforeNode(struct node *,int ,int);
struct node *InsertAfterNode(struct node *,int ,int);
struct node *InsertAtPos(struct node *,int ,int);
struct node *DeleteAtStart(struct node *);
struct node *DeleteAtLast(struct node *);

 CH 6: Linked List 6.78

struct node *DeleteBeforeNode(struct node *,int);
struct node *DeleteAfterNode(struct node *,int);
struct node *DeleteNode(struct node *,int);
struct node *DeleteAtPos(struct node *,int);

int main()
{

struct node *head = NULL;
int option, Value, Data, Position, NodeCount;

while(1)
{

printf("0: Exit\n");
printf("1: Create doubly linked list\n");
printf("2: Display all nodes of the doubly linked list\n");
printf("3: Display no. of nodes in the doubly linked list\n");
printf("4: Insert a node at the starting of the doubly linked list\n");
printf("5: Insert a node at the end of the doubly linked list\n");
printf("6: Insert a node before a specific node of the doubly linked list\n");
printf("7: Insert a node after a specific node of the doubly linked list\n");
printf("8: Insert a node at a specific position of the doubly linked list\n");
printf("9: Delete a node at the starting of the doubly linked list\n");
printf("10: Delete a node at the end of the doubly linked list\n");
printf("11: Delete a node before a specific node of the doubly linked list\n");
printf("12: Delete a node after a specific node of the doubly linked list\n");
printf("13: Delete a specific node of the doubly linked list\n");
printf("14: Delete a node at a specific position of the doubly linked list\n");
printf("15: Delete all nodes of the doubly linked list\n");

printf("\n");
printf("Enter your option: ");
scanf("%d", &option);

switch(option)
{

case 0: head = FreeNode(head);
exit(1);

case 1: head = CreateNode();
break;

case 2: DisplayNode(head);
break;

case 3: NodeCount = CountNodes(head);
printf("No. of nodes in the linked list: %d\n\n", NodeCount);
break;

case 4: printf("Enter the data of a new node to be inserted at the starting: ");
scanf("%d", &Data);
head = InsertAtStart(head, Data);
break;

 CH 6: Linked List 6.79

case 5: printf("Enter the data of a new node to be inserted at the last: ");
scanf("%d", &Data);
head = InsertAtLast(head, Data);
break;

case 6: printf("Enter the value of a node before which a new node will be
 inserted: ");

scanf("%d", &Value);
printf("Enter the data of the new node to be inserted before the

 specified node: ");
scanf("%d", &Data);
head = InsertBeforeNode(head, Value, Data);
break;

case 7: printf("Enter the value of a node after which a new node will be
 inserted: ");

scanf("%d", &Value);
printf("Enter the data of the new node to be inserted after the

 specified node: ");
scanf("%d", &Data);
head = InsertAfterNode(head, Value, Data);
break;

case 8: printf("Enter the position where a node will be inserted: ");
scanf("%d", &Position);
printf("Enter the data of the node to be inserted at the specified

 position: ");
scanf("%d", &Data);
head = InsertAtPos(head, Position, Data);
break;

case 9: head = DeleteAtStart(head);
break;

case 10: head = DeleteAtLast(head);
break;

case 11: printf("Enter the value of a node before which a node will be
 deleted: ");

 scanf("%d", &Value);
 head = DeleteBeforeNode(head, Value);
 break;

 case 12: printf("Enter the value of a node after which a node will be deleted ");
 scanf("%d", &Value);
 head = DeleteAfterNode(head, Value);
 break;

case 13: printf("Enter the value of a node which will be deleted: ");
 scanf("%d", &Value);
 head = DeleteNode(head, Value);
 break;

 CH 6: Linked List 6.80

case 14: printf("Enter the position where the node will be deleted: ");

 scanf("%d", &Position);
 head = DeleteAtPos(head, Position);
 break;

case 15: head = FreeNode(head);
 printf("All nodes of the doubly linked list have been deleted

 successfully\n\n");
 break;

default: printf("Wrong Option\n");
 break;

}
}

return 0;
}

struct node *CreateNode()
{

struct node *headptr = NULL, *ptr;
int i, n, Data;

printf("Enter the no. of nodes to be created in the doubly linked list: ");
scanf("%d", &n);

for(i=0; i<n; i++)
{

printf("Enter Data%d: ", i+1);
scanf("%d", &Data);

if(i == 0)
{

headptr = InsertAtEmpty(Data);
ptr = headptr;

}
else
{

ptr = InsertAtEnd(ptr, Data);
}

}

printf("Doubly Linked list has been created successfully.\n\n");

ptr = NULL;

return headptr;
}

 CH 6: Linked List 6.81

struct node *InsertAtEmpty(int Data)
{

struct node *headptr;
headptr = (struct node *)malloc(sizeof(struct node));

headptr->prev = NULL;
headptr->data = Data;
headptr->next = NULL;

return headptr;
}

struct node *InsertAtEnd(struct node *ptr,int Data)
{

ptr->next = (struct node *)malloc(sizeof(struct node));
ptr->next->data = Data;
ptr->next->prev = ptr;
ptr->next->next = NULL;

return ptr->next;
}

void DisplayNode(struct node *ptr)
{

printf("The Doubly linked list is given below:\n");

while(ptr != NULL)
{

printf("%-5d", ptr->data);
if(ptr->next == NULL)

break;
ptr = ptr->next;

}

printf("\n\n");

printf("The Doubly linked list is given below in reverse order:\n");

while(ptr != NULL)
{

printf("%-5d", ptr->data);
if(ptr->prev == NULL)

break;
ptr = ptr->prev;

}

printf("\n\n");

ptr = NULL;
}

 CH 6: Linked List 6.82

int CountNodes(struct node *ptr)
{

int count = 0;

while(ptr != NULL)
{

count++;
ptr = ptr->next;

}

return count;
}

struct node *InsertAtStart(struct node *headptr,int Data)
{

struct node *ptr;

ptr = (struct node *)malloc(sizeof(struct node));
ptr->prev = NULL;
ptr->data = Data;
ptr->next = headptr;
headptr->prev = ptr;
headptr = ptr;

printf("A new node has been inserted at the starting successfully.\n\n");

ptr = NULL;

return headptr;
}

struct node *InsertAtLast(struct node *headptr,int Data)
{

struct node *ptr = headptr;

if(ptr == NULL)
{

headptr = InsertAtEmpty(Data);
ptr = headptr;

}
else
{

while(ptr->next != NULL)
ptr = ptr->next;

ptr = InsertAtEnd(ptr, Data);
}
printf("A new node has been inserted at the end successfully.\n\n");

ptr = NULL;
return headptr;

}

 CH 6: Linked List 6.83

struct node *InsertBeforeNode(struct node *headptr,int Value,int Data)
{

struct node *ptr = headptr, *newnode;

if(ptr->data == Value)
{

headptr = InsertAtStart(headptr, Data);
}
else
{

while(ptr != NULL && ptr->data != Value)
ptr = ptr->next;

if(ptr == NULL)
printf("The node before which insertion will be done is not found.\n\n");

else
{

newnode = (struct node *)malloc(sizeof(struct node));
newnode->data = Data;
newnode->next = ptr;
newnode->prev = ptr->prev;
ptr->prev = newnode;
newnode->prev->next = newnode;

 printf("A new node has been inserted before the specified node successfully);
}

}

newnode = NULL;
ptr = NULL;
return headptr;

}

struct node *InsertAfterNode(struct node *headptr,int Value,int Data)
{

struct node *ptr = headptr, *newnode;
while(ptr != NULL && ptr->data != Value)

ptr = ptr->next;
if(ptr == NULL)

printf("The node after which insertion will be done is not found.\n\n");
else
{

newnode = (struct node *)malloc(sizeof(struct node));
newnode->data = Data;
newnode->prev = ptr;
newnode->next = ptr->next;
ptr->next = newnode;
if(newnode->next != NULL)

newnode->next->prev = newnode;

printf("A new node has been inserted after the specified node successfully.\n\n");
}

 CH 6: Linked List 6.84

newnode = NULL;
ptr = NULL;

return headptr;
}

struct node *InsertAtPos(struct node *headptr,int Position,int Data)
{

struct node *ptr = headptr, *newnode;
int i, NoOfNodes;

NoOfNodes = CountNodes(headptr);

if(Position < 1 || Position > NoOfNodes + 1)
{

printf("The specified position is wrong.\n\n");
}
else if(Position == 1)
{

headptr = InsertAtStart(headptr, Data);
}
else
{

for(i=1; i<Position - 1; i++)
ptr = ptr->next;

newnode = (struct node *)malloc(sizeof(struct node));
newnode->data = Data;
newnode->prev = ptr;
newnode->next = ptr->next;
ptr->next = newnode;
if(newnode->next != NULL)

newnode->next->prev = newnode;

printf("A new node has been inserted at a specific position successfully.\n\n");
}

newnode = NULL;
ptr = NULL;

return headptr;
}

struct node *DeleteAtStart(struct node *headptr)
{

struct node *ptr = headptr;

if(ptr == NULL)
{

printf("The linked list is empty.\n\n");
}

 CH 6: Linked List 6.85

else
{

headptr = ptr->next;
if(headptr != NULL)

headptr->prev = NULL;
free(ptr);
printf("The node has been deleted at the starting successfully.\n\n");

}
ptr = NULL;
return headptr;

}

struct node *DeleteAtLast(struct node *headptr)
{

struct node *ptr = headptr;

if(ptr == NULL)
{

printf("The linked list is empty.\n\n");
}
else
{

while(ptr->next != NULL)
{

ptr = ptr->next;
}

if(ptr == headptr)
headptr = NULL;

else
ptr->prev->next = NULL;

free(ptr);
printf("The node has been deleted at the end successfully.\n\n");

}

ptr = NULL;
return headptr;

}

struct node *DeleteBeforeNode(struct node *headptr,int Value)
{

struct node *ptr = headptr;

if(ptr == NULL)
{

printf("The linked list is empty.\n\n");
}

 CH 6: Linked List 6.86

else if(ptr->next != NULL && ptr->next->data == Value)
{

headptr = DeleteAtStart(headptr);
}
else
{

while(ptr != NULL && ptr->data != Value)
ptr = ptr->next;

if(ptr == NULL)
printf("The node before which deletion will be done is not found.\n\n");

else if(ptr == headptr)
printf("The deletion of a node before the first node is not possible.\n\n");

else
{

ptr = ptr->prev;
ptr->prev->next = ptr->next;
ptr->next->prev = ptr->prev;

free(ptr);
printf("The node has been deleted before the specified node successfully");

}
}
ptr = NULL;
return headptr;

}

struct node *DeleteAfterNode(struct node *headptr,int Value)
{

struct node *ptr = headptr;
if(ptr == NULL)

printf("The linked list is empty.\n\n");
else
{

while(ptr != NULL && ptr->data != Value)
ptr = ptr->next;

if(ptr == NULL)
printf("The node after which deletion will be done is not found.\n\n");

else if(ptr->next == NULL)
printf("The deletion of a node after the last node is not possible.\n\n");

else
{

ptr = ptr->next;
ptr->prev->next = ptr->next;
if(ptr->next !=NULL)

ptr->next->prev = ptr->prev;
free(ptr);
printf("The node has been deleted after the specified node successfullyn\n");

}
}

 CH 6: Linked List 6.87

ptr = NULL;
return headptr;

}

struct node *DeleteNode(struct node *headptr,int Value)
{

struct node *ptr = headptr;

if(ptr == NULL)
{

printf("The linked list is empty.\n\n");
}
else if(ptr->data == Value)
{

headptr = DeleteAtStart(headptr);
}
else
{

while(ptr != NULL && ptr->data != Value)
ptr = ptr->next;

if(ptr == NULL)
printf("The specified node which will be deleted is not found.\n\n");

else
{

ptr->prev->next = ptr->next;
if(ptr->next !=NULL)

ptr->next->prev = ptr->prev;

free(ptr);
printf("The specified node has been deleted successfully.\n\n");

}

}

ptr = NULL;
return headptr;

}

struct node *DeleteAtPos(struct node *headptr,int Position)
{

struct node *ptr = headptr;
int i, NoOfNodes;

NoOfNodes = CountNodes(headptr);

if(ptr == NULL)
{

printf("The linked list is empty.\n\n");
}

 CH 6: Linked List 6.88

else if(Position<1 || Position > NoOfNodes)
{

printf("The specified position is wrong.\n\n");
}
else if(Position == 1)
{

headptr = DeleteAtStart(headptr);
}
else
{

for(i=1; i<Position; i++)
ptr = ptr->next;

ptr->prev->next = ptr->next;
if(ptr->next !=NULL)

ptr->next->prev = ptr->prev;

free(ptr);
printf("The node at the specified position has been deleted successfully.\n\n");

}

ptr = NULL;
return headptr;

}

struct node *FreeNode(struct node *headptr)
{

struct node *ptr;

while(headptr != NULL)
{

ptr = headptr->next;
free(headptr);
headptr = ptr;

}

headptr = NULL;
ptr = NULL;
return headptr;

}

3) Circular Linked List – A circular linked list is a special type of linked list where first
and the last node are somehow connected to each other. There are two types of circular linked
list – 1. Circular singly linked list and 2. Circular doubly linked list.

 CH 6: Linked List 6.89

1. Circular Singly Linked List – It is a special type of singly linked list where the last
node points to the first node of the linked list. Here every node of the linked list contains two
parts which are data part and link part. The data part holds the data and the link part holds the
address of the next or successor node. Thus the link of every node becomes the pointer to the
next node. As the successor node of the last node is the first node in case of a circular singly
linked list, the link of the last node points the first node by holding the address of the first
node. The pictorial view of a circular singly linked list is shown in Fig.6.4.

Fig.6.4: Pictorial view of a circular singly linked list

From the above figure it is being seen that the last node is connected to the first node with the
help of the link of the last node. Therefore it is possible to traverse from the last node to the
first node in a circular singly linked list.

Note: If the word “circular linked list” is specified in anywhere instead of the word “circular singly
linked list”, it should be considered as circular singly linked list. Therefore the words “circular linked
list”and “circular singly linked list” will be used interchangeably in the rest part of this chapter.

Comparative study between singly linked list and circular singly linked list

Differences between singly linked list and circular singly linked list

SL. Singly Linked List Circular Singly linked List

1. Last node is not connected to the first node Last node is connected to the first node

2. Link part of the last node does not hold the
address of the first node. The last node points
to NULL to terminate the singly linked list.

Link part of the last node holds the
address of the first node i.e. the last
node points to the first node in case of
a circular singly linked list.

3. Traversal from last node to first node is not
possible.

Traversal from last node to first node is
possible.

4. Singly linked list is accessed by a head
pointer which points to the first node of the
linked list.

4. Circular singly linked list is
accessed by a tail pointer which points
to the last node of the linked list.

5. As the singly linked list is pointed by the
head pointer at its first node, traversal of
nodes is required to insert a new node at the
end of the linked list. So the time complexity
is O(n) here for a singly linked list with n no.
of nodes.

As the circular singly linked list is
pointed by the tail pointer at its last
node, traversal of nodes is not required
to insert a new node at the end of the
linked list. So the time complexity is
O(1) here for a circular doubly linked
list with n no. of nodes

 CH 6: Linked List 6.90

Similarities between singly linked list and circular singly linked list

SL. Singly Linked List Circular Singly linked List

1. It is a linear data structure, because
every node has one predecessor and
one successor except the first and the
last node.

It is a linear data structure as every node
has one predecessor and one successor.

2. Every node has two parts – data part
and link part.

Every node has two parts – data part and
link part.

3. Traversal of nodes is possible in one
direction.

Traversal of nodes is possible in one
direction.

4. Insertion of a new node at the
beginning of the singly linked list is
done without any traversal. Therefore
the time complexity becomes O(1).

Insertion of a new node at the beginning of
the circular singly linked list is done
without any traversal. Therefore the time
complexity becomes O(1).

Declaring a circular singly linked list – It is being observed that every node of a circular
singly linked list has two parts – one is data and other is link or pointer to the next node. This
implies that every node of a circular singly linked list is formed with some mixed data types.
Therefore node of a circular singly linked list may be constructed only by using structure in C
language. In C a node of a circular singly linked list can be implemented by the following
code.

struct node
{

int data;
struct node *link;

};

1. Creating a circular singly linked list – Creation of a circular singly linked list means,
generation of a specified number of nodes which will be connected to each other in a
sequential manner. After the execution of this operation a circular singly linked list with n
number of nodes will be generated and the function will return the tail pointer of the linked
list. Here the tail pointer is made null for empty circular singly linked list initially. After the
creation of the first node the linked list contains only a single node. In this situation the first
node is also the last node. That’s why the link of this node points to itself as shown in Fig.6.5.

Fig.6.5: Creation of 1 st node in a circular singly linked list

 CH 6: Linked List 6.91

Therefore it implies that if the first node holds the address of itself, the circular singly linked
list has only a single node in it whereas the singly linked list holds one node when the link of
the first node becomes NULL. After the generation of second node the first node and the
second node becomes two separate nodes and this time the link part of the last node i.e. the
second node holds the address of the first node. Each time a new node will be added at the
end of the circular singly linked list and this process will continue till the creation of the nth
node. The algorithm to create n number of nodes in a circular singly linked list is given
below.

Algorithm of circular singly linked list creation:

Step 1: Start

Step 2: Set Tail_Pointer = NULL

Step 3: Input n for number of nodes to be created

Step 4: Set i = 0

Step 5: Repeat Step 6 to Step 8 while i < n

Step 6: Input Data to be stored into the node

Step 7: If i = 0 (for first node creation), then
a) Create a new node pointed by New_Node_Pointer
 Set New_Node_Pointer → data = Data
 Set New_Node_Pointer → link = New_Node_Pointer
 Set Tail_Pointer = New_Node_Pointer
Otherwise
b) Create a new node pointed by New_Node_Pointer
 Set New_Node_Pointer → data = Data
 Set New_Node_Pointer → link = Tail_Pointer → link
 Set Tail_Pointer → link = New_Node_Pointer
 Set Tail_Pointer = Tail_Pointer → link
[End of If-Else (Step 7)]

Step 8: Set i = i + 1

Step 9: Print “Circular Singly Linked List has been created successfully”.

Step 10: Set New_Node_Pointer = NULL

Step 11: Stop

Now the above mentioned algorithm for the creation of a circular singly linked list is
explained with the help of the following pictorial representation in Fig.6.6.

 CH 6: Linked List 6.92

Steps Status of Circular Singly Linked List

Initially

Empty circular singly linked list

i = 0
Data = 11

Circular singly linked list with 1 node

i = 1
Data = 22

Circular singly linked list with 2 nodes

i = 2
Data = 33

Circular singly linked list with 3 nodes

i = 3
Data = 44

Circular singly linked list with 4 nodes

Fig.6.6: Pictorial representation of circular singly linked list creation

 CH 6: Linked List 6.93

User defined function in C to create a circular singly linked list with n no. of nodes

struct node *CreateNode()
{

struct node *tailptr = NULL;
int i, n, Data;

printf("Enter the no. of nodes to be created in the circular linked list: ");
scanf("%d", &n);

for(i=0; i<n; i++)
{

printf("Enter Data%d: ", i+1);
scanf("%d", &Data);

if(i == 0)
tailptr = InsertAtEmpty(Data);

else
tailptr = InsertAtEnd(tailptr, Data);

}
printf("circular Linked list has been created successfully.\n\n");
return tailptr;

}

struct node *InsertAtEmpty(int Data)
{

struct node *tailptr;
tailptr = (struct node *)malloc(sizeof(struct node));

tailptr->data = Data;
tailptr->link = tailptr;

return tailptr;
}

struct node *InsertAtEnd(struct node *tailptr,int Data)
{

struct node *ptr;
ptr = (struct node *)malloc(sizeof(struct node));
ptr->data = Data;
ptr->link = tailptr->link;
tailptr->link = ptr;

ptr = NULL;
return tailptr->link;

}

 CH 6: Linked List 6.94

2. Displaying the data of all nodes in a circular singly linked list – This operation displays/
prints the data of all nodes in a circular singly linked list in forward direction i.e. from
starting node to the last node. In this case a temporary pointer ptr is taken to point the starting
node or first node initially. It is required to traverse all the nodes from first node to the last
node and during this traversal the data of every node is displayed on the screen.

Hence the traversal of nodes should start from the first node and continue up to the last node
of the circular singly linked list. Therefore the last node should be detected to stop the
traversal process. As the last node is pointed by the tail pointer, any node in a circular singly
linked list will be detected as the last node if its link becomes Tail_Pointer → link. But to
accomplish this task we have to face a problem. When ptr is used to point the first node of a
circular singly linked list, it will be equal to ‘Tail_Pointer → link’ as the first node is also
pointed by the pointer ‘Tail_Pointer → link’ in case of a circular singly linked list. If ‘while’
loop is used with the condition “ptr ≠ Tail_Pointer → link” to traverse the nodes of a circular
singly linked list, the loop will not be executed anymore as the condition “ptr = Tail_Pointer
→ link” will be satisfied for the first node in a circular linked list. To solve this problem a do-
while loop is used instead of a while loop for the traversal of the nodes in a circular linked
list. In case of a do-while loop the statement “ptr = ptr → link” inside the loop are executed
first and then the condition “ ptr ≠ Tail_Pointer → link” is checked. This time the loop will be
iterated as usual, because the ptr will point to the second node instead of the first node during
the condition checking of the do-while loop. The structure of the do-while loop for display
function of a circular singly linked list is shown below.

do
{

printf(“%d “, ptr→data);
ptr = ptr → link;

}while(ptr != tailptr->link);

Algorithm of displaying the data of all nodes in a circular singly linked list:

Step 1: Start

Step 2: If Tail_Pointer = NULL (Condition for empty linked list), then
Print “Circular Linked List is empty”.
Go to Step 8
[End of If (Step 2)]

Step 3: Set ptr = Tail_Pointer → link

Step 4: Print ptr → data

Step 5: Set ptr = ptr → link

Step 6: Repeat Step 4 to Step 5 while ptr ≠ Tail_Pointer → link

Step 7: Set ptr = NULL

Step 8: Stop

 CH 6: Linked List 6.95

User defined function in C to display the data of all nodes in a circular singly linked list

void DisplayNodes(struct node *tailptr)
{

struct node *ptr;
if(tailptr == NULL)
{

printf("Circular linked list is empty.\n\n");
return;

}

ptr = tailptr->link;
printf("The circular linked list is given below:\n");

do
{

printf("%-5d", ptr->data);
ptr = ptr->link;

}while(ptr != tailptr->link);

printf("\n\n");

ptr = NULL;
}

3. Counting the number of nodes in a circular singly linked list – This operation counts
the number of nodes in a circular singly linked list. Here a variable ‘count’ is initialized to
zero and incremented by one each time the pointer ptr traverses the successive nodes in the
linked list.

Algorithm to count the number of nodes in a circular singly linked list:

Step 1: Start

Step 2: Set count = 0

Step 3: If Tail_Pointer = NULL (Condition for empty linked list), then
Print “Circular Linked List is empty”.
Go to Step 10
[End of If (Step 3)]

Step 4: Set ptr = Tail_Pointer → link

 CH 6: Linked List 6.96

Step 5: Set count = count + 1

Step 6: Set ptr = ptr → link

Step 7: Repeat Step 5 to Step 6 while ptr ≠ Tail_Pointer → link

Step 8: Print count to display the number of nodes

Step 9: Set ptr = NULL

Step 10: Stop

User defined function in C to count the number of nodes in a circular singly linked list

int CountNodes(struct node *tailptr)
{

int count = 0;
struct node *ptr;

if(tailptr == NULL)
{

printf("Circular linked list is empty.\n\n");
return count;

}

ptr = tailptr->link;

do
{

count++;
ptr = ptr->link;

}while(ptr != tailptr->link);

ptr = NULL;

return count;
}

 CH 6: Linked List 6.97

4. Insert a node at the beginning of a circular singly linked list – Here a new node will be
inserted at the beginning of a circular singly linked list. After the insertion the new node
becomes the starting node or the first node of the linked list.

Algorithm to insert a node at the beginning of a circular singly linked list:

Step 1: Start

Step 2: Input Data to be stored into the new node

Step 3: If Tail_Pointer = NULL (Condition for empty linked list), then
a) Create a new node pointed by New_Node_Pointer
 Set New_Node_Pointer → data = Data
 Set New_Node_Pointer → link = New_Node_Pointer
 Set Tail_Pointer = New_Node_Pointer
Otherwise
b) Create a new node pointed by New_Node_Pointer
 Set New_Node_Pointer → data = Data
 Set New_Node_Pointer → link = Tail_Pointer → link
 Set Tail_Pointer → link = New_Node_Pointer
 [End of If -Else (Step 3)]

Step 4: Print “A new node has been inserted at the starting successfully”.

Step 5: New_Node_Pointer = NULL

Step 6: Stop

User defined function in C to insert a node at the beginning of a circular singly linked
list

struct node *InsertAtStart(struct node *tailptr,int Data)
{

struct node *ptr;

if(tailptr == NULL)
tailptr = InsertAtEmpty(Data);

else
{

ptr = (struct node *)malloc(sizeof(struct node));
ptr->data = Data;
ptr->link = tailptr->link;
tailptr->link = ptr;

}
printf("A new node has been inserted at the starting successfully.\n\n");
ptr = NULL;
return tailptr;

}

 CH 6: Linked List 6.98

struct node *InsertAtEmpty(int Data)
{

struct node *tailptr;
tailptr = (struct node *)malloc(sizeof(struct node));

tailptr->data = Data;
tailptr->link = tailptr;

return tailptr;
}

5. Insert a node at the end of a circular singly linked list – This operation inserts a newly
created node at the end of a circular singly linked list i.e. it add the new node after the last
node of the existing linked list. After the insertion at the end the new node becomes the last
node of the linked list and that’s why the new node must be pointed by Tail pointer.

Algorithm to insert a node at the end of a circular singly linked list:

Step 1: Start

Step 2: Input Data to be stored into the new node

Step 3: If Tail_Pointer = NULL (Condition for empty linked list), then
a) Create a new node pointed by New_Node_Pointer
 Set New_Node_Pointer → data = Data
 Set New_Node_Pointer → link = New_Node_Pointer
 Set Tail_Pointer = New_Node_Pointer
Otherwise
b) Create a new node pointed by New_Node_Pointer
 Set New_Node_Pointer → data = Data
 Set New_Node_Pointer → link = Tail_Pointer → link
 Set Tail_Pointer → link = New_Node_Pointer;
 Set Tail_Pointer = New_Node_Pointer
[End of If-Else (Step 3)]

Step 4: Print “A new node has been inserted at the end successfully”.

Step 5: Set New_Node_Pointer = NULL

Step 6: Stop

In the above algorithm two situations during the insertion of a node at the end has been
considered – one situation when the circular singly linked list is empty and other situation
when the circular linked list is not empty. When the circular singly linked list is empty, the
procedure same as the procedure to insert the first node into the empty linked list is followed.
But the important point to observe here that traversal of nodes is not required during the
insertion of a new node at the end of a non-empty circular singly linked list whereas traversal
is mandatory for the insertion of a node at the end of a singly linked list.

 CH 6: Linked List 6.99

User defined function in C to insert a node at the end of a circular singly linked list

struct node *InsertAtLast(struct node *tailptr,int Data)
{

struct node *ptr;

if(tailptr == NULL)
tailptr = InsertAtEmpty(Data);

else
{

ptr = (struct node *)malloc(sizeof(struct node));
ptr->data = Data;
ptr->link = tailptr->link;
tailptr->link = ptr;

}
printf("A new node has been inserted at the end successfully.\n\n");

ptr = NULL;
return tailptr->link;

}
struct node *InsertAtEmpty(int Data)
{

struct node *tailptr;
tailptr = (struct node *)malloc(sizeof(struct node));

tailptr->data = Data;
tailptr->link = tailptr;

return tailptr;
}

6. Insert a node before a specific node in a circular singly linked list – This function will
insert a new node just before another node which is specified by the user. Here we have to
consider two situations.

In first situation the specified node is the first node in the linked list. So the insertion of a new
node before the first node is basically the insertion of a new node at the beginning of the link
list, which has been already discussed previously in this chapter. In second situation when the
specified node is not first node, we have to insert the newly created node in between the
specified node and the node just before the specified node. Except these two situations, there
are another two error situations where the circular linked list is empty and the specified node
is not found in the linked list. In these cases an error message will be printed.

 CH 6: Linked List 6.100

Algorithm of inserting a node before a specific node in a circular singly linked list:

Step 1: Start

Step 2: Input Value of a node before which a new node will be inserted

Step 3: Input Data to be stored into the new node

Step 4: If Tail_Pointer = NULL (Condition for empty linked list), then
Print “Circular Linked List is empty”.
Go to Step 8
[End of If (Step 4)]

Step 5: If Tail_Pointer → link → data = Value [Condition of finding Value in 1st node], then
a) Create a new node pointed by New_Node_Pointer
 Set New_Node_Pointer → data = Data
 Set New_Node_Pointer → link = Tail_Pointer → link
 Set Tail_Pointer → link = New_Node_Pointer
Otherwise
b) Set ptr = Tail_Pointer → link
c) Repeat (d) while ptr → link → data ≠ Value and ptr ≠ Tail_Pointer
d) Set ptr = ptr → link

e) If ptr = Tail_Pointer, then
i) Print “The node before which insertion will be done is not found”.
Otherwise
ii) Create a new node pointed by New_Node_Pointer

 Set New_Node_Pointer → data = Data
Set New_Node_Pointer → link = ptr → link
Set ptr → link = New_Node_Pointer
Print “A new node has been inserted before the specified node”.

 [End of If-Else (e)]
[End of If-Else (Step 5)]

Step 6: Set ptr = NULL

Step 7: Set New_Node_Pointer = NULL

Step 8: Stop

 CH 6: Linked List 6.101

User defined function in C to insert a node before a specific node in a circular singly
linked list

struct node *InsertBeforeNode(struct node *tailptr,int Value,int Data)
{

struct node *ptr, *newnodeptr;

if(tailptr == NULL)
{

printf("Circular lined list is empty\n\n");
return tailptr;

}
else if(tailptr->link->data == Value)

tailptr = InsertAtStart(tailptr, Data);
else
{

ptr = tailptr->link;
while(ptr->link->data != Value && ptr != tailptr)

ptr = ptr->link;

if(ptr == tailptr)
printf("The node before which insertion will be done is not found\n");

else
{

newnodeptr = (struct node *)malloc(sizeof(struct node));
newnodeptr->data = Data;
newnodeptr->link = ptr->link;
ptr->link = newnodeptr;
printf("A new node has been inserted before the specified node

 successfully.\n\n");
}

}
newnodeptr = NULL;
ptr = NULL;
return tailptr;

}

struct node *InsertAtStart(struct node *tailptr,int Data)
{

struct node *ptr;
if(tailptr == NULL)

tailptr = InsertAtEmpty(Data);
else
{

ptr = (struct node *)malloc(sizeof(struct node));
ptr->data = Data;
ptr->link = tailptr->link;

 CH 6: Linked List 6.102

tailptr->link = ptr;
}
printf("A new node has been inserted at the starting successfully.\n\n");

ptr = NULL;
return tailptr;

}

struct node *InsertAtEmpty(int Data)
{

struct node *tailptr;
tailptr = (struct node *)malloc(sizeof(struct node));
tailptr->data = Data;
tailptr->link = tailptr;
return tailptr;

}

7. Insert a node after a specific node in a circular singly linked list – This operation will
insert a new node just after another node which is specified by the user. Here at first the node
with the specified value is searched through the traversal of the linked list and if the specified
node is found, a new node with entered data will be inserted after it, otherwise an error
message will be displayed.

Algorithm of inserting a node after a specific node in a circular singly linked list:

Step 1: Start

Step 2: Input Value of a node after which a new node will be inserted

Step 3: Input Data to be stored into the new node

Step 4: If Tail_Pointer = NULL (Condition for empty linked list), then
Print “Circular Linked List is empty”.
Go to Step 8
[End of If (Step 4)]

Step 5: If Tail_Pointer → data = Value (Condition of finding Value in last node), then
a) Create a new node pointed by New_Node_Pointer
 Set New_Node_Pointer → data = Data
 Set New_Node_Pointer → link = Tail_Pointer → link
 Set Tail_Pointer → link = New_Node_Pointer;
 Set Tail_Pointer = New_Node_Pointer
Otherwise
b) Set ptr = Tail_Pointer → link
c) Repeat (d) while ptr → data ≠ Value and ptr ≠ Tail_Pointer
d) Set ptr = ptr → link
e) If ptr = Tail_Pointer, then

i) Print “The node after which insertion will be done is not found”.

 CH 6: Linked List 6.103

Otherwise
ii) Create a new node pointed by New_Node_Pointer

 Set New_Node_Pointer → data = Data
Set New_Node_Pointer → link = ptr → link
Set ptr → link = New_Node_Pointer
Print “A new node has been inserted after the specified node”.

 [End of If-Else (e)]
[End of If-Else (Step 5)]

Step 6: Set ptr = NULL

Step 7: Set New_Node_Pointer = NULL

Step 8: Stop

User defined function in C to insert a node after a specific node in a circular singly
linked list

struct node *InsertAfterNode(struct node *tailptr,int Value,int Data)
{

struct node *ptr, *newnodeptr;
if(tailptr == NULL)
{

printf("Circular lined list is empty\n\n");
return tailptr;

}
else if(tailptr->data == Value)

tailptr = InsertAtLast(tailptr, Data);
else
{

ptr = tailptr->link;
while(ptr->data != Value && ptr != tailptr)

ptr = ptr->link;
if(ptr == tailptr)

printf("The node after which insertion will be done is not found.\n\n");
else
{

newnodeptr = (struct node *)malloc(sizeof(struct node));
newnodeptr->data = Data;
newnodeptr->link = ptr->link;
ptr->link = newnodeptr;
printf("A new node has been inserted after the specified node.");

}
}
newnodeptr = NULL;
ptr = NULL;
return tailptr;

}

 CH 6: Linked List 6.104

struct node *InsertAtLast(struct node *tailptr,int Data)
{

struct node *ptr;
if(tailptr == NULL)

tailptr = InsertAtEmpty(Data);
else
{

ptr = (struct node *)malloc(sizeof(struct node));
ptr->data = Data;
ptr->link = tailptr->link;
tailptr->link = ptr;

}
printf("A new node has been inserted at the end successfully.\n\n");

ptr = NULL;
return tailptr->link;

}

struct node *InsertAtEmpty(int Data)
{

struct node *tailptr;
tailptr = (struct node *)malloc(sizeof(struct node));

tailptr->data = Data;
tailptr->link = tailptr;

return tailptr;
}

8. Insert a node at a specific position of a circular singly linked list – This function inserts
a new node with an entered data at a specified position of a circular singly linked list. In this
case the remaining part of the linked list starting from the specific position will be shifted
right and the new node will be placed at the specified position. For example – if the specified
position is 3rd in a linked list of three nodes, then the new node will be placed at 3rd position
and the 3rd node of the existing linked list will be shifted right one position to become 4 th

node.

Algorithm of inserting a node at a specific position of a circular singly linked list:

Step 1: Start

Step 2: Input Position where a new node will be inserted

Step 3: Input Data to be stored into the new node

Step 4: Set NoOfNodes = Total number of nodes in the linked list

 CH 6: Linked List 6.105

Step 5: If Position < 1 or Position > NoOfNodes + 1, then
a) Print “Entered position is Invalid”.
Otherwise
b) If Position = 1 (Condition of 1st node selection), then

i) Create a new node pointed by New_Node_Pointer
Set New_Node_Pointer → data = Data
Set New_Node_Pointer → link = Tail_Pointer → link
Set Tail_Pointer → link = New_Node_Pointer

 Otherwise
ii) If Position = NoOfNodes + 1 (Condition of last node selection), then

Create a new node pointed by New_Node_Pointer
 Set New_Node_Pointer → data = Data
 Set New_Node_Pointer → link = Tail_Pointer → link
 Set Tail_Pointer → link = New_Node_Pointer
 Set Tail_Pointer = New_Node_Pointer
Otherwise

iii) Set i = 1
iv) Set ptr = Tail_Pointer → link
v) Repeat vi) while i < Position – 1
vi) Set ptr = ptr → link

vii) Create a new node pointed by New_Node_Pointer
viii) Set New_Node_Pointer → data = Data
ix) Set New_Node_Pointer → link = ptr → link
x) Set ptr → link = New_Node_Pointer
xi) Print “A new node has been inserted at a specific position of the linked list”.
[End of If-Else (ii)]

 [End of If-Else (b)]
[End of If-Else (Step 5)]

Step 6: Set ptr = NULL

Step 7: Set New_Node_Pointer = NULL

Step 8: Stop

 CH 6: Linked List 6.106

User defined function in C to insert a node at a specific position in a circular singly
linked list

struct node *InsertAtPos(struct node *tailptr,int Position,int Data)
{

struct node *ptr, *newnodeptr;
int i, NoOfNodes;

NoOfNodes = CountNodes(tailptr);
if(Position < 1 || Position > NoOfNodes + 1)

printf("The specified position is wrong.\n\n");
else if(Position == 1)

tailptr = InsertAtStart(tailptr, Data);
else if(Position == NoOfNodes + 1)

tailptr = InsertAtLast(tailptr, Data);
else
{

ptr = tailptr->link;
for(i=1; i<Position - 1; i++)

ptr = ptr->link;

newnodeptr = (struct node *)malloc(sizeof(struct node));
newnodeptr->data = Data;
newnodeptr->link = ptr->link;
ptr->link = newnodeptr;
printf("A new node has been inserted at a specific position successfully.\n");

}
newnodeptr = NULL;
ptr = NULL;
return tailptr;

}

struct node *InsertAtStart(struct node *tailptr,int Data)
{

struct node *ptr;
if(tailptr == NULL)

tailptr = InsertAtEmpty(Data);
else
{

ptr = (struct node *)malloc(sizeof(struct node));
ptr->data = Data;
ptr->link = tailptr->link;
tailptr->link = ptr;

}
printf("A new node has been inserted at the starting successfully.\n\n");
ptr = NULL;
return tailptr;

}

 CH 6: Linked List 6.107

struct node *InsertAtLast(struct node *tailptr,int Data)
{

struct node *ptr;

if(tailptr == NULL)
tailptr = InsertAtEmpty(Data);

else
{

ptr = (struct node *)malloc(sizeof(struct node));
ptr->data = Data;
ptr->link = tailptr->link;
tailptr->link = ptr;

}
printf("A new node has been inserted at the end successfully.\n\n");

ptr = NULL;
return tailptr->link;

}

struct node *InsertAtEmpty(int Data)
{

struct node *tailptr;
tailptr = (struct node *)malloc(sizeof(struct node));

tailptr->data = Data;
tailptr->link = tailptr;
return tailptr;

}

 CH 6: Linked List 6.108

9. Delete a node at the beginning of a circular singly linked list – This operation deletes a
node at the beginning of a circular singly linked list. Here three situations have been
considered.
1st situation: When the linked list is empty, an error message will be displayed.
2nd situation: When the linked list holds a single node, there will be no node left after the
deletion and the Tail_Pointer is made NULL.
3rd situation: When the circular linked list consists of multiple node, the node at the beginning
of the list will be removed.

Algorithm to delete a node at the beginning of a circular singly linked list:

Step 1: Start

Step 2: If Tail_Pointer = NULL (Condition for empty linked list), then
a) Print “Circular Linked List is empty”.
Otherwise
b) If Tail_Pointer = Tail_Pointer → link (Condition for one node), then

Set ptr = Tail_Pointer
Remove the node pointed by ptr
Tail_Pointer = NULL
Print “The node has been deleted at the starting of the linked list”
Otherwise

c) Set ptr = Tail_Pointer → link
Set Tail_Pointer → link = ptr → link
Remove the node pointed by ptr
Print “The node has been deleted at the starting of the linked list”

 [End of If-Else (b)]
[End of If-Else (Step 2)]

Step 3: Set ptr = NULL

Step 4: Stop

User defined function in C to delete a node at the beginning of a circular singly linked list

struct node *DeleteAtStart(struct node *tailptr)
{

struct node *ptr;
if(tailptr == NULL)

printf("Circular linked list is empty.\n\n");
else if(tailptr == tailptr->link)
{

ptr = tailptr;
free(ptr);
tailptr = NULL;
printf("The node has been deleted at the starting successfully.\n\n");

}

 CH 6: Linked List 6.109

else
{

ptr = tailptr->link;
tailptr->link = ptr->link;
free(ptr);
printf("The node has been deleted at the starting successfully.\n\n");

}
ptr = NULL;
return tailptr;

}

10. Delete a node at the end of a circular singly linked list – In this operation the node at
the end of a circular singly linked list will be removed. Here three situations have been
considered.
1st situation: When the linked list is empty, an error message will be displayed.
2nd situation: When the linked list holds a single node, there will be no node left after the
deletion and the Tail_Pointer is made NULL.
3rd situation: When the circular linked list consists of multiple node, the node at the last of the
list will be removed and Tail_Pointer is shifted to point the previous node.

Algorithm to delete a node at the end of a circular singly linked list:

Step 1: Start

Step 2: If Tail_Pointer = NULL (Condition for empty linked list), then
a) Print “Circular Linked List is empty”.
Otherwise
b) If Tail_Pointer = Tail_Pointer → link (Condition for one node), then

Set ptr = Tail_Pointer
Remove the node pointed by ptr
Tail_Pointer = NULL
Print “The node has been deleted at the starting of the linked list”
Otherwise

c) Set ptr = Tail_Pointer → link
d) Repeat e) while ptr → link ≠ Tail_Pointer
e) Set ptr = ptr → link
f) Set ptr → link = Tail_Pointer → link
g) Remove the node pointed by Tail_Pointer
h) Set Tail_Poimter = ptr
i) Print “The node has been deleted at the end of the linked list”
 [End of If-Else (b)]
[End of If-Else (Step 2)]

Step 3: Set ptr = NULL

Step 4: Stop

 CH 6: Linked List 6.110

User defined function in C to delete a node at the end of a circular singly linked list

struct node *DeleteAtLast(struct node *tailptr)
{

struct node *ptr;

if(tailptr == NULL)
printf("Circular linked list is empty.\n\n");

else if(tailptr == tailptr->link)
{

ptr = tailptr;
free(ptr);
tailptr = NULL;
printf("The node has been deleted at the starting successfully.\n\n");

}
else
{

ptr = tailptr->link;
while(ptr->link != tailptr)

ptr = ptr->link;

ptr->link = tailptr->link;
free(tailptr);
tailptr = ptr;
printf("The node has been deleted at the end successfully.\n\n");

}
ptr = NULL;
return tailptr;

}

11. Delete a node before a specific node in a circular singly linked list – Here two error
cases and two cases of deletion will be considered.
The two error cases are:
1) The first error case occurs when the linked list is empty.
2) The second error case occurs when a value given by a user is not found in the circular
singly linked list.

The two cases to delete a node before a specified node are given below.
1) If the value of the second node is given by a user, then obviously the first node of the
linked list will be deleted. Here the algorithm of deletion of a node at the beginning of the
linked list will be followed.
2) If the value of a node except the second node is selected, then the node just before the
specified node will be removed. Here the searching of the given value is started from 3 rd node
and continue up to 1st node of the circular singly linked list. If the value is found in the 1st

node, the node before the 1st node i.e. the last node will be deleted in case of circular linked
list whereas the deletion is not possible for such situation in case of a singly linked list.

 CH 6: Linked List 6.111

Algorithm to delete a node before the specified node of a circular singly linked list:

Step 1: Start

Step 2: Input Value of a node before which a node will be deleted

Step 3: If Tail_Pointer = NULL (Condition for empty linked list), then
a) Print “Circular Linked List is empty”.
Otherwise
b) If Tail_Pointer → link → link → data = Value (Condition for 2nd node selection), then

Set ptr = Tail_Pointer → link
Set Tail_Pointer → link = ptr → link
Remove the node pointed by ptr
Print “The node has been deleted at the starting of the linked list”
Otherwise

c) Set ptr = Tail_Pointer → link
d) Set prevptr = Tail_Pointer
e) Set prevptr = ptr
f) Set ptr = ptr → link
g) Repeat e) and f) while ptr → link → data ≠ Value and ptr ≠ Tail_Pointer → link

i) If ptr = Tail_Pointer → link, then
Printf “The node before which deletion will be done is not found”.
Otherwise

ii) Set prevptr → link = ptr → link
1. If ptr = Tail_Pointer (Condition of deletion of last node), then

Set Tail_Pointer = prevptr
[End of If (1)]

iii) Remove the node pointed by ptr
iv) Print “The node has been deleted before the specified node”.

[End of If-Else (i)]
 [End of If-Else (b)]
[End of If-Else (Step 3)]

Step 4: Set prevptr = NULL

Step 5: Set ptr = NULL

Step 6: Stop

In the above algorithm the pointer prevptr is used to point the predecessor node of the node
pointed by the pointer ptr.

 CH 6: Linked List 6.112

User defined function in C to delete a node before a specific node in a circular singly linked list

struct node *DeleteBeforeNode(struct node *tailptr,int Value)
{

struct node *ptr, *prevptr;

if(tailptr == NULL)
{

printf("Circular linked list is empty.\n\n");
}
else if(tailptr->link->link->data == Value)
{

tailptr = DeleteAtStart(tailptr);
}
else
{

ptr = tailptr->link;
prevptr = tailptr;

do
{

prevptr = ptr;
ptr = ptr->link;

}while(ptr->link->data != Value && ptr != tailptr->link);

if(ptr == tailptr->link)
printf("The node before which deletion will be done is not found\n");

else
{

prevptr->link = ptr->link;
if(ptr == tailptr)

tailptr = prevptr;
free(ptr);
printf("The node has been deleted before the specified node

 successfully.\n\n");
}

}

prevptr = NULL;
ptr = NULL;
return tailptr;

}

 CH 6: Linked List 6.113

struct node *DeleteAtStart(struct node *tailptr)
{

struct node *ptr;

if(tailptr == NULL)
{

printf("Circular linked list is empty.\n\n");
}
else if(tailptr == tailptr->link)
{

ptr = tailptr;
free(ptr);
tailptr = NULL;
printf("The node has been deleted at the starting successfully.\n\n");

}
else
{

ptr = tailptr->link;
tailptr->link = ptr->link;
free(ptr);
printf("The node has been deleted at the starting successfully.\n\n");

}
ptr = NULL;
return tailptr;

}

12. Delete a node after a specific node in a circular singly linked list – Here two error
cases will be considered.
The two error cases are:
1) The first error case occurs when the circular singly linked list is empty.
2) The second error case occurs when a value given by a user is not found in any node of the
circular linked list.

The two cases to delete a node after a specified node are given below.
1) If the value of the last node is given by a user, then obviously the first node (the node after
the last node for a circular linked list) of the linked list will be deleted. Here the algorithm of
deletion of a node at the beginning of the linked list will be followed.
2) If the value of a node except the last node is selected, then the node just after the specified
node will be removed. Here the searching of the given value is started from 1st node and
continue up to the last but one node of the circular singly linked list. If the value is found in
the last node, the node after the last node i.e. 1st node node will be deleted in case of circular
linked list whereas the deletion is not possible for such situation in case of a singly linked list.

 CH 6: Linked List 6.114

Algorithm to delete a node after the specified node of a circular singly linked list:

Step 1: Start

Step 2: Input Value of a node before which a node will be deleted

Step 3: If Tail_Pointer = NULL (Condition for empty linked list), then
a) Print “Circular Linked List is empty”.
Otherwise
b) If Tail_Pointer → data = Value (Condition for last node selection), then

Set ptr = Tail_Pointer → link
Set Tail_Pointer → link = ptr → link
Remove the node pointed by ptr
Print “The node has been deleted at the starting of the linked list”
Otherwise

c) Set ptr = Tail_Pointer → link
d) Set prevptr = Tail_Pointer
e) Set prevptr = ptr
f) Set ptr = ptr → link
g) Repeat e) and f) while prevptr → data ≠ Value and ptr ≠ Tail_Pointer → link

i) If ptr = Tail_Pointer → link, then
Printf “The node after which deletion will be done is not found”.
Otherwise

ii) Set prevptr → link = ptr → link
1. If ptr = Tail_Pointer (Condition of deletion of last node), then

Set Tail_Pointer = prevptr
[End of If (1)]

iii) Remove the node pointed by ptr
iv) Print “The node has been deleted after the specified node”.

[End of If-Else (i)]
 [End of If-Else (b)]
[End of If-Else (Step 3)]

Step 4: Set prevptr = NULL

Step 5: Set ptr = NULL

Step 6: Stop

In the above algorithm the pointer prevptr is used to point the predecessor node of the node
pointed by the pointer ptr.

 CH 6: Linked List 6.115

User defined function in C to delete a node after a specific node in a circular singly linked list

struct node *DeleteAfterNode(struct node *tailptr,int Value)
{

struct node *ptr, *prevptr;

if(tailptr == NULL)
{

printf("Circular linked list is empty.\n\n");
}
else if(tailptr->data == Value)
{

tailptr = DeleteAtStart(tailptr);
}
else
{

ptr = tailptr->link;
prevptr = tailptr;

do
{

prevptr = ptr;
ptr = ptr->link;

}while(prevptr->data != Value && ptr != tailptr->link);

if(ptr == tailptr->link)
printf("The node after which deletion will be done is not found.\n\n");

else
{

prevptr->link = ptr->link;
if(ptr == tailptr)

tailptr = prevptr;
free(ptr);
printf("The node has been deleted after the specified node.\n\n");

}
}

prevptr = NULL;
ptr = NULL;
return tailptr;

}

 CH 6: Linked List 6.116

struct node *DeleteAtStart(struct node *tailptr)
{

struct node *ptr;

if(tailptr == NULL)
{

printf("Circular linked list is empty.\n\n");
}
else if(tailptr == tailptr->link)
{

ptr = tailptr;
free(ptr);
tailptr = NULL;
printf("The node has been deleted at the starting successfully.\n\n");

}
else
{

ptr = tailptr->link;
tailptr->link = ptr->link;
free(ptr);
printf("The node has been deleted at the starting successfully.\n\n");

}
ptr = NULL;
return tailptr;

}

13. Delete a specific node of a circular singly linked list – In this case a value is specified
by a user and that value is searched among the nodes of the linked list. If the value is found in
the data part of any node, that particular node will be removed from the linked list. Here two
error cases may occur.
1) When the circular linked list is completely empty, there will be no node for deletion.
2) When the specified value is not found in the data part of any node of the linked list.

Here two cases will happen for deleting a particular node.
1) When first node is selected for deletion, the algorithm of “deletion at the beginning of the
linked list” is applied.
2) When any other node except the first node is chosen for removal, the other procedure is
applied.

 CH 6: Linked List 6.117

Algorithm to delete a specific node of a circular singly linked list:

Step 1: Start

Step 2: Input Value of a node before which a node will be deleted

Step 3: If Tail_Pointer = NULL (Condition for empty linked list), then
a) Print “Circular Linked List is empty”.
Otherwise
b) If Tail_Pointer → link → data = Value (Condition for 1st node selection), then

Set ptr = Tail_Pointer → link
Set Tail_Pointer → link = ptr → link
Remove the node pointed by ptr
Print “The node has been deleted at the starting of the linked list”
Otherwise

c) Set ptr = Tail_Pointer → link
d) Set prevptr = Tail_Pointer
e) Set prevptr = ptr
f) Set ptr = ptr → link
g) Repeat e) and f) while ptr → data ≠ Value and ptr ≠ Tail_Pointer → link

i) If ptr = Tail_Pointer → link, then
Printf “The specified node which will be deleted is not found”.
Otherwise

ii) Set prevptr → link = ptr → link
1. If ptr = Tail_Pointer (Condition of deletion of last node), then

Set Tail_Pointer = prevptr
[End of If (1)]

iii) Remove the node pointed by ptr
iv) Print “The specified node has been deleted successfully”.

[End of If-Else (i)]
 [End of If-Else (b)]
[End of If-Else (Step 3)]

Step 4: Set prevptr = NULL

Step 5: Set ptr = NULL

Step 6: Stop

In the above algorithm the pointer prevptr is used to point the predecessor node of the node
pointed by the pointer ptr.

 CH 6: Linked List 6.118

User defined function in C to delete a specific node in a circular singly linked list

struct node *DeleteNode(struct node *tailptr,int Value)
{

struct node *ptr, *prevptr;

if(tailptr == NULL)
{

printf("Circular linked list is empty.\n\n");
}
else if(tailptr->link->data == Value)
{

tailptr = DeleteAtStart(tailptr);
}
else
{

ptr = tailptr->link;
prevptr = tailptr;

do
{

prevptr = ptr;
ptr = ptr->link;

}while(ptr->data != Value && ptr != tailptr->link);

if(ptr == tailptr->link)
printf("The specified node which will be deleted is not found.\n\n");

else
{

prevptr->link = ptr->link;
if(ptr == tailptr)

tailptr = prevptr;
free(ptr);
printf("The specified node has been deleted successfully.\n\n");

}

}

prevptr = NULL;
ptr = NULL;
return tailptr;

}

 CH 6: Linked List 6.119

struct node *DeleteAtStart(struct node *tailptr)
{

struct node *ptr;

if(tailptr == NULL)
{

printf("Circular linked list is empty.\n\n");
}
else if(tailptr == tailptr->link)
{

ptr = tailptr;
free(ptr);
tailptr = NULL;
printf("The node has been deleted at the starting successfully.\n\n");

}
else
{

ptr = tailptr->link;
tailptr->link = ptr->link;
free(ptr);
printf("The node has been deleted at the starting successfully.\n\n");

}
ptr = NULL;
return tailptr;

}

14. Delete a node at a specific position of a circular singly linked list – Here a specific
position like 1st, 2nd, 3rd etc is given by a user and the particular node at that given position
will be deleted from the circular linked list.

Two error cases may happen in this case.
1) When the linked list is completely empty.
2) When the given position is not valid for a particular linked list. For example – if 0 th

position or 5th position is given for a linked list with 4 nodes, then no node is present at the 0th

position or at the 5th position. Here these positions will be considered as invalid.

In addition to this, two situations for deletion of a node may occur.
1) If the 1st position is given by a user, then the same algorithm to delete a node at the
beginning of the linked list will be followed.
2) If any other position except 1st position is given, then usual procedure will be followed.

 CH 6: Linked List 6.120

Algorithm to delete a node at a specific position in a singly linked list:

Step 1: Start

Step 2: Input Position where a node will be deleted

Step 3: Count the number of nodes and store that count into the variable NoOfNodes.

Step 4: If Tail_Pointer = NULL (Condition for empty linked list), then
a) Print “The circular linked list is empty”.
Otherwise
b) If Position < 1 or Position > NoOfNodes, then

i) Print “The specified position is wrong”.
Otherwise
ii) If Position = 1 [Condition for 1st node selection], then

1. Set ptr = Tail_Pointer → link
Set Tail_Pointer → link = ptr → link
Remove the node pointed by ptr
Print “The node has been deleted at the starting of the linked list”

Otherwise
2. Set ptr = Tail_Pointer → link
3. Set prevptr = Tail_Pointer
4. Set i = 1
5. Repeat 6. and 7. while i < Position
6. Set prevptr = ptr
7. Set ptr = ptr → link
8. Set prevptr→link = ptr→link

A. If ptr = Tail_Pointer
Tail_Pointer = prevptr
[End of If (A)]

9. Remove the node pointed by ptr
10. Print “The node at the specified position has been deleted successfully”.

 [End of If-Else (ii)]
 [End of If-Else (b)]

 [End of If-Else (Step 4)]

Step 5: Set prevptr = NULL

Step 6: Set ptr = NULL

Step 7: Stop

 CH 6: Linked List 6.121

User defined function in C to delete a node at a specific position in a circular singly linked list

struct node *DeleteAtPos(struct node *tailptr,int Position)
{

struct node *ptr, *prevptr;
int i, NoOfNodes;

NoOfNodes = CountNodes(tailptr);

if(tailptr == NULL)
{

printf("Circular linked list is empty.\n\n");
}
else if(Position<1 || Position > NoOfNodes)
{

printf("The specified position is wrong.\n\n");
}
else if(Position == 1)
{

tailptr = DeleteAtStart(tailptr);
}
else
{

ptr = tailptr->link;
prevptr = tailptr;

for(i=1; i<Position; i++)
{

prevptr = ptr;
ptr = ptr->link;

}

prevptr->link = ptr->link;
if(ptr == tailptr)

tailptr = prevptr;
free(ptr);
printf("The node at the specified position has been deleted successfully.\n\n");

}

prevptr = NULL;
ptr = NULL;
return tailptr;

}

 CH 6: Linked List 6.122

struct node *DeleteAtStart(struct node *tailptr)
{

struct node *ptr;

if(tailptr == NULL)
{

printf("Circular linked list is empty.\n\n");
}
else if(tailptr == tailptr->link)
{

ptr = tailptr;
free(ptr);
tailptr = NULL;
printf("The node has been deleted at the starting successfully.\n\n");

}
else
{

ptr = tailptr->link;
tailptr->link = ptr->link;
free(ptr);
printf("The node has been deleted at the starting successfully.\n\n");

}
ptr = NULL;
return tailptr;

}

In the above discussion fourteen different operations on circular singly linked list have been
explained with the help of algorithms. All these operations are combined in a single C
program and implemented using different user-defined functions which are already given in
the previous sections. The fourteen different operations along with the user-defined functions
are given below for recapitulation.

SL Operations applied on circular singly linked list User-defined functions

1 Creating a circular singly linked list CreateNode()

2 Displaying the data of all nodes in a circular singly linked list DisplayNodes()

3 Counting the number of nodes in a circular singly linked list CountNodes()

4 Insert a node at the beginning of a circular singly linked list InsertAtStart()

5 Insert a node at the end of a circular singly linked list InsertAtLast()

6 Insert a node before a specific node in circular singly linked list InsertBeforeNode()

7 Insert a node after a specific node in a circular singly linked list InsertAfterNode()

8 Insert a node at a specific position of a circular singly linked list InsertAtPos()

9 Delete a node at the beginning of a circular singly linked list DeleteAtStart()

10 Delete a node at the end of a circular singly linked list DeleteAtLast()

 CH 6: Linked List 6.123

SL Operations applied on circular singly linked list User-defined functions

11 Delete a node before a specific node in circular singly linked list DeleteBeforeNode()

12 Delete a node after a specific node in a circular singly linked list DeleteAfterNode()

13 Delete a specific node of a circular singly linked list DeleteNode()

14 Delete a node at a specific position of a circular singly linked list DeleteAtPos()

C Program to create a circular singly linked list, implement different insertion operations and
different deletion operations

#include<stdio.h>
#include<stdlib.h>

struct node
{

int data;
struct node *link;

};

struct node *CreateNode();
struct node *InsertAtEmpty(int);
struct node *InsertAtEnd(struct node *,int);
void DisplayNodes(struct node *);
int CountNodes(struct node *);
struct node *FreeNode(struct node *);
struct node *InsertAtStart(struct node *,int);
struct node *InsertAtLast(struct node *,int);
struct node *InsertBeforeNode(struct node *,int ,int);
struct node *InsertAfterNode(struct node *,int ,int);
struct node *InsertAtPos(struct node *,int ,int);
struct node *DeleteAtStart(struct node *);
struct node *DeleteAtLast(struct node *);
struct node *DeleteBeforeNode(struct node *,int);
struct node *DeleteAfterNode(struct node *,int);
struct node *DeleteNode(struct node *,int);
struct node *DeleteAtPos(struct node *,int);

int main()
{

struct node *tail = NULL;
int option, Value, Data, Position, NodeCount;

system("clear");

while(1)
{

printf("0: Exit\n");
printf("1: Create circular linked list\n");

 CH 6: Linked List 6.124

printf("2: Display all nodes of the circular linked list\n");
printf("3: Display no. of nodes in the circular linked list\n");
printf("4: Insert a node at the starting of the circular linked list\n");
printf("5: Insert a node at the end of the circular linked list\n");
printf("6: Insert a node before a specific node of the circular linked list\n");
printf("7: Insert a node after a specific node of the circular linked list\n");
printf("8: Insert a node at a specific position of the circular linked list\n");
printf("9: Delete a node at the starting of the circular linked list\n");
printf("10: Delete a node at the end of the circular linked list\n");
printf("11: Delete a node before a specific node of the circular linked list\n");
printf("12: Delete a node after a specific node of the circular linked list\n");
printf("13: Delete a specific node of the circular linked list\n");
printf("14: Delete a node at a specific position of the circular linked list\n");
printf("15: Delete all nodes of the circular linked list\n");

printf("\n");
printf("Enter your option: ");
scanf("%d", &option);

switch(option)
{

case 0: tail = FreeNode(tail);
exit(1);

case 1: tail = CreateNode();
break;

case 2: DisplayNodes(tail);
break;

case 3: NodeCount = CountNodes(tail);
printf("No. of nodes in the linked list: %d\n\n", NodeCount);
break;

case 4: printf("Enter the data of a new node to be inserted at the starting: ");
scanf("%d", &Data);
tail = InsertAtStart(tail, Data);
break;

case 5: printf("Enter the data of a new node to be inserted at the last: ");
scanf("%d", &Data);
tail = InsertAtLast(tail, Data);
break;

case 6: printf("Enter the value of a node before which a new node will be
 inserted: ");

scanf("%d", &Value);
printf("Enter the data of the new node to be inserted before the

 specified node: ");
scanf("%d", &Data);
tail = InsertBeforeNode(tail, Value, Data);
break;

 CH 6: Linked List 6.125

case 7: printf("Enter the value of a node after which a new node will be
 inserted: ");

scanf("%d", &Value);
printf("Enter the data of the new node to be inserted after the

 specified node: ");
scanf("%d", &Data);
tail = InsertAfterNode(tail, Value, Data);
break;

case 8: printf("Enter the position where a node will be inserted: ");
scanf("%d", &Position);
printf("Enter the data of the node to be inserted at the specified

 position: ");
scanf("%d", &Data);
tail = InsertAtPos(tail, Position, Data);
break;

case 9: tail = DeleteAtStart(tail);
break;

case 10: tail = DeleteAtLast(tail);
break;

case 11: printf("Enter the value of a node before which a node will be
 deleted: ");

 scanf("%d", &Value);
 tail = DeleteBeforeNode(tail, Value);
 break;

 case 12: printf("Enter the value of a node after which a node will be deleted: ");
 scanf("%d", &Value);
 tail = DeleteAfterNode(tail, Value);
 break;

case 13: printf("Enter the value of a node which will be deleted: ");
 scanf("%d", &Value);
 tail = DeleteNode(tail, Value);
 break;

case 14: printf("Enter the position where the node will be deleted: ");
 scanf("%d", &Position);
 tail = DeleteAtPos(tail, Position);
 break;

case 15: if(tail == NULL)
 printf("Circular linked list is empty.\n\n");
 else
 {
 tail = FreeNode(tail);

 printf("All nodes of the circular linked list have been deleted\n");
 }
 break;

 CH 6: Linked List 6.126

default: printf("Wrong Option\n");
 break;

}
}

return 0;
}

struct node *CreateNode()
{

struct node *tailptr = NULL;
int i, n, Data;

printf("Enter the no. of nodes to be created in the circular linked list: ");
scanf("%d", &n);

for(i=0; i<n; i++)
{

printf("Enter Data%d: ", i+1);
scanf("%d", &Data);

if(i == 0)
{

tailptr = InsertAtEmpty(Data);
}
else
{

tailptr = InsertAtEnd(tailptr, Data);
}

}

printf("circular Linked list has been created successfully.\n\n");

return tailptr;
}

struct node *InsertAtEmpty(int Data)
{

struct node *tailptr;
tailptr = (struct node *)malloc(sizeof(struct node));

tailptr->data = Data;
tailptr->link = tailptr;

return tailptr;
}

 CH 6: Linked List 6.127

struct node *InsertAtEnd(struct node *tailptr,int Data)
{

struct node *ptr;
ptr = (struct node *)malloc(sizeof(struct node));
ptr->data = Data;
ptr->link = tailptr->link;
tailptr->link = ptr;
ptr = NULL;
return tailptr->link;

}

void DisplayNodes(struct node *tailptr)
{

struct node *ptr;
if(tailptr == NULL)
{

printf("Circular linked list is empty.\n\n");
return; }

ptr = tailptr->link;
printf("The circular linked list is given below:\n");
do
{

printf("%-5d", ptr->data);
ptr = ptr->link;

}while(ptr != tailptr->link);

printf("\n\n");
ptr = NULL;

}

int CountNodes(struct node *tailptr)
{

int count = 0;
struct node *ptr;
if(tailptr == NULL)
{

printf("Circular linked list is empty.\n\n");
return count;

}

ptr = tailptr->link;
do
{

count++;
ptr = ptr->link;

}while(ptr != tailptr->link);

ptr = NULL;

return count;
}

 CH 6: Linked List 6.128

struct node *InsertAtStart(struct node *tailptr,int Data)
{

struct node *ptr;

if(tailptr == NULL)
{

tailptr = InsertAtEmpty(Data);
}
else
{

ptr = (struct node *)malloc(sizeof(struct node));
ptr->data = Data;
ptr->link = tailptr->link;
tailptr->link = ptr;

}

printf("A new node has been inserted at the starting successfully.\n\n");

ptr = NULL;

return tailptr;
}

struct node *InsertAtLast(struct node *tailptr,int Data)
{

struct node *ptr;

if(tailptr == NULL)
{

tailptr = InsertAtEmpty(Data);
}
else
{

ptr = (struct node *)malloc(sizeof(struct node));
ptr->data = Data;
ptr->link = tailptr->link;
tailptr->link = ptr;

}

printf("A new node has been inserted at the end successfully.\n\n");

ptr = NULL;
return tailptr->link;

}

 CH 6: Linked List 6.129

struct node *InsertBeforeNode(struct node *tailptr,int Value,int Data)
{

struct node *ptr, *newnodeptr;

if(tailptr == NULL)
{

printf("Circular lined list is empty\n\n");
return tailptr;

}
else if(tailptr->link->data == Value)
{

tailptr = InsertAtStart(tailptr, Data);
}
else
{

ptr = tailptr->link;

while(ptr->link->data != Value && ptr != tailptr)
ptr = ptr->link;

if(ptr == tailptr)
printf("The node before which insertion will be done is not found.\n\n");

else
{

newnodeptr = (struct node *)malloc(sizeof(struct node));
newnodeptr->data = Data;
newnodeptr->link = ptr->link;
ptr->link = newnodeptr;
printf("A new node has been inserted before the specified node.\n\n");

}
}

newnodeptr = NULL;
ptr = NULL;

return tailptr;
}

struct node *InsertAfterNode(struct node *tailptr,int Value,int Data)
{

struct node *ptr, *newnodeptr;

if(tailptr == NULL)
{

printf("Circular lined list is empty\n\n");
return tailptr;

}
else if(tailptr->data == Value)
{

tailptr = InsertAtLast(tailptr, Data);
}

 CH 6: Linked List 6.130

else
{

ptr = tailptr->link;

while(ptr->data != Value && ptr != tailptr)
ptr = ptr->link;

if(ptr == tailptr)
printf("The node after which insertion will be done is not found.\n\n");

else
{

newnodeptr = (struct node *)malloc(sizeof(struct node));
newnodeptr->data = Data;
newnodeptr->link = ptr->link;
ptr->link = newnodeptr;
printf("A new node has been inserted after the specified node successfully.");

}
}

newnodeptr = NULL;
ptr = NULL;
return tailptr;

}

struct node *InsertAtPos(struct node *tailptr,int Position,int Data)
{

struct node *ptr, *newnodeptr;
int i, NoOfNodes;

NoOfNodes = CountNodes(tailptr);

if(Position < 1 || Position > NoOfNodes + 1)
{

printf("The specified position is wrong.\n\n");
}
else if(Position == 1)
{

tailptr = InsertAtStart(tailptr, Data);
}
else if(Position == NoOfNodes + 1)
{

tailptr = InsertAtLast(tailptr, Data);
}
else
{

ptr = tailptr->link;
for(i=1; i<Position - 1; i++)

ptr = ptr->link;

newnodeptr = (struct node *)malloc(sizeof(struct node));
newnodeptr->data = Data;
newnodeptr->link = ptr->link;

 CH 6: Linked List 6.131

ptr->link = newnodeptr;
printf("A new node has been inserted at a specific position successfully.\n\n");

}

newnodeptr = NULL;
ptr = NULL;
return tailptr;

}

struct node *DeleteAtStart(struct node *tailptr)
{

struct node *ptr;

if(tailptr == NULL)
{

printf("Circular linked list is empty.\n\n");
}
else if(tailptr == tailptr->link)
{

ptr = tailptr;
free(ptr);
tailptr = NULL;
printf("The node has been deleted at the starting successfully.\n\n");

}
else
{

ptr = tailptr->link;
tailptr->link = ptr->link;
free(ptr);
printf("The node has been deleted at the starting successfully.\n\n");

}
ptr = NULL;
return tailptr;

}

struct node *DeleteAtLast(struct node *tailptr)
{

struct node *ptr;

if(tailptr == NULL)
{

printf("Circular linked list is empty.\n\n");
}
else if(tailptr == tailptr->link)
{

ptr = tailptr;
free(ptr);
tailptr = NULL;
printf("The node has been deleted at the starting successfully.\n\n");

}

 CH 6: Linked List 6.132

else
{

ptr = tailptr->link;

while(ptr->link != tailptr)
ptr = ptr->link;

ptr->link = tailptr->link;
free(tailptr);
tailptr = ptr;
printf("The node has been deleted at the end successfully.\n\n");

}

ptr = NULL;
return tailptr;

}

struct node *DeleteBeforeNode(struct node *tailptr,int Value)
{

struct node *ptr, *prevptr;

if(tailptr == NULL)
{

printf("Circular linked list is empty.\n\n");
}
else if(tailptr->link->link->data == Value)
{

tailptr = DeleteAtStart(tailptr);
}
else
{

ptr = tailptr->link;
prevptr = tailptr;

do
{

prevptr = ptr;
ptr = ptr->link;

}while(ptr->link->data != Value && ptr != tailptr->link);

if(ptr == tailptr->link)
printf("The node before which deletion will be done is not found.\n\n");

else
{

prevptr->link = ptr->link;
if(ptr == tailptr)

tailptr = prevptr;
free(ptr);
printf("The node has been deleted before the specified node successfully.");

}
}

 CH 6: Linked List 6.133

prevptr = NULL;
ptr = NULL;
return tailptr;

}

struct node *DeleteAfterNode(struct node *tailptr,int Value)
{

struct node *ptr, *prevptr;

if(tailptr == NULL)
{

printf("Circular linked list is empty.\n\n");
}
else if(tailptr->data == Value)
{

tailptr = DeleteAtStart(tailptr);
}
else
{

ptr = tailptr->link;
prevptr = tailptr;

do
{

prevptr = ptr;
ptr = ptr->link;

}while(prevptr->data != Value && ptr != tailptr->link);

if(ptr == tailptr->link)
printf("The node after which deletion will be done is not found.\n\n");

else
{

prevptr->link = ptr->link;
if(ptr == tailptr)

tailptr = prevptr;
free(ptr);
printf("The node has been deleted after the specified node successfully.\n");

}
}

prevptr = NULL;
ptr = NULL;
return tailptr;

}

 CH 6: Linked List 6.134

struct node *DeleteNode(struct node *tailptr,int Value)
{

struct node *ptr, *prevptr;

if(tailptr == NULL)
{

printf("Circular linked list is empty.\n\n");
}
else if(tailptr->link->data == Value)
{

tailptr = DeleteAtStart(tailptr);
}
else
{

ptr = tailptr->link;
prevptr = tailptr;

do
{

prevptr = ptr;
ptr = ptr->link;

}while(ptr->data != Value && ptr != tailptr->link);

if(ptr == tailptr->link)
printf("The specified node which will be deleted is not found.\n\n");

else
{

prevptr->link = ptr->link;
if(ptr == tailptr)

tailptr = prevptr;
free(ptr);
printf("The specified node has been deleted successfully.\n\n");

}

}

prevptr = NULL;
ptr = NULL;
return tailptr;

}

struct node *DeleteAtPos(struct node *tailptr,int Position)
{

struct node *ptr, *prevptr;
int i, NoOfNodes;

NoOfNodes = CountNodes(tailptr);

if(tailptr == NULL)
{

printf("Circular linked list is empty.\n\n");
}

 CH 6: Linked List 6.135

else if(Position<1 || Position > NoOfNodes)
{

printf("The specified position is wrong.\n\n");
}
else if(Position == 1)
{

tailptr = DeleteAtStart(tailptr);
}
else
{

ptr = tailptr->link;
prevptr = tailptr;

for(i=1; i<Position; i++)
{

prevptr = ptr;
ptr = ptr->link;

}

prevptr->link = ptr->link;
if(ptr == tailptr)

tailptr = prevptr;
free(ptr);
printf("The node at the specified position has been deleted successfully.\n\n");

}

prevptr = NULL;
ptr = NULL;
return tailptr;

}

struct node *FreeNode(struct node *tailptr)
{

struct node *ptr;
while(tailptr != NULL)
{

if(tailptr == tailptr->link)
{

free(tailptr);
tailptr = NULL;

}
else
{

ptr = tailptr->link;
tailptr->link = ptr->link;
free(ptr);

}
}
ptr = NULL;
return tailptr;

}

 CH 6: Linked List 6.136

2. Circular Doubly Linked List – It is a special type of doubly linked list where the
last node points to the first node and the first node points to the last node. Here every node of
the linked list contains three parts which are data part and two link parts – one link points to
the predecessor node and other link points to the successor node. The data part holds the data,
the predecessor link holds the address of the previous node and the successor link holds the
address of the next node. The predecessor link is denoted by the pointer ‘prev’ and the
successor link is denoted by the pointer ‘next’ in case of a circular doubly linked list. The
pictorial view of a circular doubly linked list is shown in Fig.6.7.

Fig.6.7: Pictorial view of a circular doubly linked list

Comparative study between doubly linked list and circular doubly linked list

Differences between doubly linked list and circular doubly linked list

SL. Doubly Linked List Circular Doubly Linked List

1. Last node is not connected to the first
node as the prev pointer of the 1st node
and the next pointer of the last node are
made NULL.

First node and the last node are connected
to each other with the help of the prev
pointer of the 1st node and the next pointer
of the last node.

2. The prev part and the next part of the 1st

and the last node point to NULL. That’s
why they do not hold any address.

The prev part and the next part of the 1st

and the last node hold the addresses of last
node and the 1st node respectively in case of
a circular doubly linked list.

3. Traversal from last node to first node or
1st node to last node is not possible.

Traversal from last node to 1st node as well
as from 1st node to the last node, both are
possible.

4. Doubly linked list is accessed only by a
head pointer which points to the first
node of the linked list.

4. Circular singly linked list is accessed by
a tail pointer which points to the last node
of the linked list.

5. As the doubly linked list is pointed by
the head pointer at its first node,
traversal of nodes towards the last node
is required to insert a new node at the
end of the linked list. Therefore the
time complexity is O(n) here for a
doubly linked list with n number of
nodes

As the circular doubly linked list is pointed
by the tail pointer at its last node, traversal
of nodes is not required to insert a new
node at the end of the linked list. Therefore
the time complexity is O(1) here for a
circular doubly linked list with n number of
nodes

 CH 6: Linked List 6.137

Similarities between doubly linked list and circular doubly linked list

SL. Doubly Linked List Circular Doubly linked List

1. It is a linear data structure, because
every node has one predecessor and
one successor except the first and the
last node.

It is a linear data structure as every node
has one predecessor and one successor.

2. Every node has three parts – data part
and two link parts.

Every node has three parts – data part and
two link parts.

3. Traversal of nodes is possible in both
direction.

Traversal of nodes is possible in both
direction.

4. Insertion of a new node at the
beginning of the doubly linked list is
done without any traversal. Therefore
the time complexity becomes O(1).

Insertion of a new node at the beginning of
the circular doubly linked list is done
without any traversal. Therefore the time
complexity becomes O(1).

Declaring a circular doubly linked list – It is being observed that every node of a circular
doubly linked list has three parts – one is data and other two are links or pointers. Among
these two pointers one points to the predecessor node and denoted by ‘prev’ and other points
to the successor node and denoted by ‘next’. A circular doubly linked list is declared as
follows in C language.

struct node
{

struct node *prev;
int data;
struct node *next;

};

In this case fourteen different operations can be developed in the same way. The algorithms
of these functions may be implemented in case of a circular doubly linked list also using the
same convention like circular singly linked list. Therefore these algorithms are not revealed
in this section. All these operations are combined in a single C program and implemented
using different user-defined functions as given below.

SL Operations applied on circular doubly linked list User-defined functions

1 Creating a circular doubly linked list CreateNode()

2 Displaying the data of all nodes in a circular doubly linked list DisplayNodes()

3 Counting the number of nodes in a circular doubly linked list CountNodes()

4 Insert a node at the beginning of a circular doubly linked list InsertAtStart()

5 Insert a node at the end of a circular doubly linked list InsertAtLast()

6 Insert a node before a specific node in circular doubly linked list InsertBeforeNode()

 CH 6: Linked List 6.138

SL Operations applied on circular doubly linked list User-defined functions

7 Insert a node after a specific node in a circular doubly linked list InsertAfterNode()

8 Insert a node at a specific position of a circular doubly linked list InsertAtPos()

9 Delete a node at the beginning of a circular doubly linked list DeleteAtStart()

10 Delete a node at the end of a circular doubly linked list DeleteAtLast()

11 Delete a node before a specific node in a circular doubly linked list DeleteBeforeNode()

12 Delete a node after a specific node in a circular doubly linked list DeleteAfterNode()

13 Delete a specific node of a circular doubly linked list DeleteNode()

14 Delete a node at a specific position of a circular doubly linked list DeleteAtPos()

C Program to create a circular doubly linked list, implement different insertion operations and
different deletion operations

#include<stdio.h>
#include<stdlib.h>

struct node
{

struct node *prev;
int data;
struct node *next;

};

struct node *CreateNode();
struct node *InsertAtEmpty(int);
struct node *InsertAtEnd(struct node *,int);
void DisplayNodes(struct node *);
int CountNodes(struct node *);
struct node *FreeNode(struct node *);
struct node *InsertAtStart(struct node *,int);
struct node *InsertAtLast(struct node *,int);
struct node *InsertBeforeNode(struct node *,int ,int);
struct node *InsertAfterNode(struct node *,int ,int);
struct node *InsertAtPos(struct node *,int ,int);
struct node *DeleteAtStart(struct node *);
struct node *DeleteAtLast(struct node *);
struct node *DeleteBeforeNode(struct node *,int);
struct node *DeleteAfterNode(struct node *,int);
struct node *DeleteNode(struct node *,int);
struct node *DeleteAtPos(struct node *,int);

 CH 6: Linked List 6.139

int main()
{

struct node *tail = NULL;
int option, Value, Data, Position, NodeCount;

while(1)
{

printf("0: Exit\n");
printf("1: Create circular doubly linked list\n");
printf("2: Display all nodes of the circular doubly linked list\n");
printf("3: Display no. of nodes in the circular doubly linked list\n");
printf("4: Insert a node at the starting of the circular doubly linked list\n");
printf("5: Insert a node at the end of the circular doubly linked list\n");
printf("6: Insert a node before a specific node of the circular doubly linked list\n");
printf("7: Insert a node after a specific node of the circular doubly linked list\n");
printf("8: Insert a node at a specific position of the circular doubly linked list\n");
printf("9: Delete a node at the starting of the circular doubly linked list\n");
printf("10: Delete a node at the end of the circular doubly linked list\n");
printf("11: Delete a node before a specific node of the circular doubly linked list\n");
printf("12: Delete a node after a specific node of the circular doubly linked list\n");
printf("13: Delete a specific node of the circular doubly linked list\n");
printf("14: Delete a node at a specific position of the circular doubly linked list\n");
printf("15: Delete all nodes of the circular doubly linked list\n");

printf("\n");
printf("Enter your option: ");
scanf("%d", &option);

switch(option)
{

case 0: tail = FreeNode(tail);
exit(1);

case 1: tail = CreateNode();
break;

case 2: DisplayNodes(tail);
break;

case 3: NodeCount = CountNodes(tail);
printf("No. of nodes in the linked list: %d\n\n", NodeCount);
break;

case 4: printf("Enter the data of a new node to be inserted at the starting: ");
scanf("%d", &Data);
tail = InsertAtStart(tail, Data);
break;

case 5: printf("Enter the data of a new node to be inserted at the last: ");
scanf("%d", &Data);
tail = InsertAtLast(tail, Data);
break;

 CH 6: Linked List 6.140

case 6: printf("Enter the value of a node before which a new node will be
 inserted: ");

scanf("%d", &Value);
printf("Enter the data of the new node to be inserted before the

 specified node: ");
scanf("%d", &Data);
tail = InsertBeforeNode(tail, Value, Data);
break;

case 7: printf("Enter the value of a node after which a new node will be
 inserted: ");

scanf("%d", &Value);
printf("Enter the data of the new node to be inserted after the

 specified node: ");
scanf("%d", &Data);
tail = InsertAfterNode(tail, Value, Data);
break;

case 8: printf("Enter the position where a node will be inserted: ");
scanf("%d", &Position);
printf("Enter the data of the node to be inserted at the specified

 position: ");
scanf("%d", &Data);
tail = InsertAtPos(tail, Position, Data);
break;

case 9: tail = DeleteAtStart(tail);
break;

case 10: tail = DeleteAtLast(tail);
break;

case 11: printf("Enter the value of a node before which a node will be
 deleted: ");

 scanf("%d", &Value);
 tail = DeleteBeforeNode(tail, Value);
 break;

 case 12: printf("Enter the value of a node after which a node will be deleted: ");
 scanf("%d", &Value);
 tail = DeleteAfterNode(tail, Value);
 break;

case 13: printf("Enter the value of a node which will be deleted: ");
 scanf("%d", &Value);
 tail = DeleteNode(tail, Value);
 break;

case 14: printf("Enter the position where the node will be deleted: ");
 scanf("%d", &Position);
 tail = DeleteAtPos(tail, Position);
 break;

 CH 6: Linked List 6.141

case 15: if(tail == NULL)
 printf("circular doubly linked list is empty.\n\n");
 else
 {
 tail = FreeNode(tail);
 printf("All nodes of the circular doubly linked list have been

 deleted successfully.\n\n");
 }
 break;

default: printf("Wrong Option\n");
 break;

}
}
return 0;

}

struct node *CreateNode()
{

struct node *tailptr = NULL;
int i, n, Data;

printf("Enter the no. of nodes to be created in the circular doubly linked list: ");
scanf("%d", &n);

for(i=0; i<n; i++)
{

printf("Enter Data%d: ", i+1);
scanf("%d", &Data);

if(i == 0)
{

tailptr = InsertAtEmpty(Data);
}
else
{

tailptr = InsertAtEnd(tailptr, Data);
}

}

printf("circular doubly Linked list has been created successfully.\n\n");

return tailptr;
}

 CH 6: Linked List 6.142

struct node *InsertAtEmpty(int Data)
{

struct node *tailptr;
tailptr = (struct node *)malloc(sizeof(struct node));

tailptr->data = Data;
tailptr->prev = tailptr;
tailptr->next = tailptr;
return tailptr;

}

struct node *InsertAtEnd(struct node *tailptr,int Data)
{

struct node *ptr;
ptr = (struct node *)malloc(sizeof(struct node));
ptr->data = Data;
ptr->prev = tailptr;
ptr->next = tailptr->next;
tailptr->next->prev = ptr;
tailptr->next = ptr;
ptr = NULL;
return tailptr->next;

}

void DisplayNodes(struct node *tailptr)
{

struct node *ptr;
if(tailptr == NULL)
{

printf("circular doubly linked list is empty.\n\n");
return;

}
ptr = tailptr->next;
printf("The circular doubly linked list is given below:\n");
do
{

printf("%-5d", ptr->data);
ptr = ptr->next;

}while(ptr != tailptr->next);

ptr = ptr->prev;
printf("\n\nThe circular doubly linked list is given below in reverse order:\n");
do
{

printf("%-5d", ptr->data);
ptr = ptr->prev;

}while(ptr != tailptr);
printf("\n\n");

ptr = NULL;
}

 CH 6: Linked List 6.143

int CountNodes(struct node *tailptr)
{

int count = 0;
struct node *ptr;

if(tailptr == NULL)
{

printf("circular doubly linked list is empty.\n\n");
return count;

}

ptr = tailptr->next;

do
{

count++;
ptr = ptr->next;

}while(ptr != tailptr->next);

ptr = NULL;

return count;
}

struct node *InsertAtStart(struct node *tailptr,int Data)
{

struct node *ptr;

if(tailptr == NULL)
{

tailptr = InsertAtEmpty(Data);
}
else
{

ptr = (struct node *)malloc(sizeof(struct node));
ptr->data = Data;
ptr->prev = tailptr;
ptr->next = tailptr->next;
tailptr->next->prev = ptr;
tailptr->next = ptr;

}

printf("A new node has been inserted at the starting successfully.\n\n");

ptr = NULL;

return tailptr;
}

 CH 6: Linked List 6.144

struct node *InsertAtLast(struct node *tailptr,int Data)
{

struct node *ptr;

if(tailptr == NULL)
tailptr = InsertAtEmpty(Data);

else
{

ptr = (struct node *)malloc(sizeof(struct node));
ptr->data = Data;
ptr->prev = tailptr;
ptr->next = tailptr->next;
tailptr->next->prev = ptr;
tailptr->next = ptr;

}
printf("A new node has been inserted at the end successfully.\n\n");
ptr = NULL;
return tailptr->next;

}

struct node *InsertBeforeNode(struct node *tailptr,int Value,int Data)
{

struct node *ptr, *newnodeptr;
if(tailptr == NULL)
{

printf("circular doubly lined list is empty\n\n");
return tailptr;

}
else if(tailptr->next->data == Value)

tailptr = InsertAtStart(tailptr, Data);
else
{

ptr = tailptr->next;
while(ptr->next->data != Value && ptr != tailptr)

ptr = ptr->next;
if(ptr == tailptr)

printf("The node before which insertion will be done is not found.\n\n");
else
{

newnodeptr = (struct node *)malloc(sizeof(struct node));
newnodeptr->data = Data;
newnodeptr->prev = ptr;
newnodeptr->next = ptr->next;
ptr->next->prev = newnodeptr;
ptr->next = newnodeptr;

 printf("A new node has been inserted before the specified node successfully");
}

}
newnodeptr = NULL;
ptr = NULL;
return tailptr;

}

 CH 6: Linked List 6.145

struct node *InsertAfterNode(struct node *tailptr,int Value,int Data)
{

struct node *ptr, *newnodeptr;

if(tailptr == NULL)
{

printf("circular doubly lined list is empty\n\n");
return tailptr;

}
else if(tailptr->data == Value)
{

tailptr = InsertAtLast(tailptr, Data);
}
else
{

ptr = tailptr->next;

while(ptr->data != Value && ptr != tailptr)
ptr = ptr->next;

if(ptr == tailptr)
printf("The node after which insertion will be done is not found.\n\n");

else
{

newnodeptr = (struct node *)malloc(sizeof(struct node));
newnodeptr->data = Data;
newnodeptr->prev = ptr;
newnodeptr->next = ptr->next;
ptr->next->prev = newnodeptr;
ptr->next = newnodeptr;
printf("A new node has been inserted after the specified node successfully.");

}
}

newnodeptr = NULL;
ptr = NULL;
return tailptr;

}

struct node *InsertAtPos(struct node *tailptr,int Position,int Data)
{

struct node *ptr, *newnodeptr;
int i, NoOfNodes;

NoOfNodes = CountNodes(tailptr);

if(Position < 1 || Position > NoOfNodes + 1)
printf("The specified position is wrong.\n\n");

else if(Position == 1)
tailptr = InsertAtStart(tailptr, Data);

 CH 6: Linked List 6.146

else if(Position == NoOfNodes + 1)
tailptr = InsertAtLast(tailptr, Data);

else
{

ptr = tailptr->next;
for(i=1; i<Position - 1; i++)

ptr = ptr->next;

newnodeptr = (struct node *)malloc(sizeof(struct node));
newnodeptr->data = Data;
newnodeptr->prev = ptr;
newnodeptr->next = ptr->next;
ptr->next->prev = newnodeptr;
ptr->next = newnodeptr;
printf("A new node has been inserted at a specific position successfully.\n\n");

}
newnodeptr = NULL;
ptr = NULL;
return tailptr;

}

struct node *DeleteAtStart(struct node *tailptr)
{

struct node *ptr;

if(tailptr == NULL)
{

printf("circular doubly linked list is empty.\n\n");
}
else if(tailptr == tailptr->next)
{

ptr = tailptr;
free(ptr);
tailptr = NULL;
printf("The node has been deleted at the starting successfully.\n\n");

}
else
{

ptr = tailptr->next;
tailptr->next = ptr->next;
tailptr->next->prev = tailptr;
free(ptr);
printf("The node has been deleted at the starting successfully.\n\n");

}
ptr = NULL;
return tailptr;

}

 CH 6: Linked List 6.147

struct node *DeleteAtLast(struct node *tailptr)
{

struct node *ptr;

if(tailptr == NULL)
{

printf("circular doubly linked list is empty.\n\n");
}
else if(tailptr == tailptr->next)
{

ptr = tailptr;
free(ptr);
tailptr = NULL;
printf("The node has been deleted at the starting successfully.\n\n");

}
else
{

ptr = tailptr->next;

while(ptr->next != tailptr)
ptr = ptr->next;

ptr->next = tailptr->next;
tailptr->next->prev = ptr;
free(tailptr);
tailptr = ptr;
printf("The node has been deleted at the end successfully.\n\n");

}

ptr = NULL;
return tailptr;

}

struct node *DeleteBeforeNode(struct node *tailptr,int Value)
{

struct node *ptr;

if(tailptr == NULL)
printf("circular doubly linked list is empty.\n\n");

else if(tailptr->next->next->data == Value)
tailptr = DeleteAtStart(tailptr);

else
{

ptr = tailptr->next;

do
{

ptr = ptr->next;
}while(ptr->next->data != Value && ptr != tailptr->next);

if(ptr == tailptr->next)
printf("The node before which deletion will be done is not found.\n\n");

 CH 6: Linked List 6.148

else
{

ptr->prev->next = ptr->next;
ptr->next->prev = ptr->prev;
if(ptr == tailptr)

tailptr = ptr->prev;
free(ptr);
printf("The node has been deleted before the specified node successfully.");

}
}
ptr = NULL;
return tailptr;

}

struct node *DeleteAfterNode(struct node *tailptr,int Value)
{

struct node *ptr;

if(tailptr == NULL)
{

printf("Circular linked list is empty.\n\n");
}
else if(tailptr->data == Value)
{

tailptr = DeleteAtStart(tailptr);
}
else
{

ptr = tailptr->next;

do
{

ptr = ptr->next;
}while(ptr->prev->data != Value && ptr != tailptr->next);

if(ptr == tailptr->next)
printf("The node after which deletion will be done is not found.\n\n");

else
{

ptr->prev->next = ptr->next;
ptr->next->prev = ptr->prev;
if(ptr == tailptr)

tailptr = ptr->prev;
free(ptr);
printf("The node has been deleted after the specified node successfully.\n");

}
}

ptr = NULL;
return tailptr;

}

 CH 6: Linked List 6.149

struct node *DeleteNode(struct node *tailptr,int Value)
{

struct node *ptr;

if(tailptr == NULL)
{

printf("circular doubly linked list is empty.\n\n");
}
else if(tailptr->next->data == Value)
{

tailptr = DeleteAtStart(tailptr);
}
else
{

ptr = tailptr->next;

do
{

ptr = ptr->next;
}while(ptr->data != Value && ptr != tailptr->next);

if(ptr == tailptr->next)
printf("The specified node which will be deleted is not found.\n\n");

else
{

ptr->prev->next = ptr->next;
ptr->next->prev = ptr->prev;
if(ptr == tailptr)

tailptr = ptr->prev;
free(ptr);
printf("The specified node has been deleted successfully.\n\n");

}

}

ptr = NULL;
return tailptr;

}

struct node *DeleteAtPos(struct node *tailptr,int Position)
{

struct node *ptr, *prevptr;
int i, NoOfNodes;

NoOfNodes = CountNodes(tailptr);

if(tailptr == NULL)
{

printf("circular doubly linked list is empty.\n\n");
}

 CH 6: Linked List 6.150

else if(Position<1 || Position > NoOfNodes)
{

printf("The specified position is wrong.\n\n");
}
else if(Position == 1)
{

tailptr = DeleteAtStart(tailptr);
}
else
{

ptr = tailptr->next;

for(i=1; i<Position; i++) {

ptr = ptr->next;
}

ptr->prev->next = ptr->next;
ptr->next->prev = ptr->prev;
if(ptr == tailptr)

tailptr = ptr->prev;
free(ptr);
printf("The node at the specified position has been deleted successfully.\n\n");

}

ptr = NULL;
return tailptr;

}

struct node *FreeNode(struct node *tailptr)
{

struct node *ptr;
while(tailptr != NULL)
{

if(tailptr == tailptr->next)
{

free(tailptr);
tailptr = NULL;

}
else
{

ptr = tailptr->next;
tailptr->next = ptr->next;
tailptr->next->prev = tailptr;
free(ptr);

}
}

ptr = NULL;
return tailptr;

}

 CH 6: Linked List 6.151

Polynomial Arithmetic – It is one of the applications of linked list. A polynomial is an
algebraic expression with multiple terms where each term has two parts namely coefficient
and exponent. For example – 5x4 – 2.5x2 + x – 3 is a polynomial with four terms where 1st

term having the coefficient +5 and the exponent +4, 2nd term having the coefficient -2.5 and
the exponent +2 etc.

A polynomial can be represented using a singly linked list to perform various polynomial
arithmetic like polynomial addition, polynomial subtraction, polynomial multiplication etc.
Here each term of the polynomial is represented by the node of a singly linked list. As there
are two parts (coefficient and exponent) in every term of a polynomial, every node of a singly
list must have three parts in it. The first part holds the coefficient, the second part holds the
exponent and the third part holds the link to point to the next node of the singly linked list.
Therefore the singly linked list will be declared as follows here.

struct node
{

float coef;
int expo;
struct node *link;

};

In the above declaration, the variable coef is used to store the coefficient and the variable
expo is used to store the exponent of each term of the polynomial.

Now sometimes the polynomial may be given in the random order of the exponents of the
terms. For example – the polynomial (5x4 – 2.5x2 + x – 3) which was given in the descending
order of the exponents previously may be expressed in random order of the exponents like
(x + 5x4 – 3 – 2.5x2) or (– 2.5x2 + x – 3 + 5x4). Here the polynomial should be represented
using a singly linked list in such a way that the node with higher exponent comes first. In
other words we can say that the singly linked list must be a sorted linked list in descending
order of the exponents. Hence how the polynomial (x + 5x4 – 3 – 2.5x2) can be represented by
a singly linked list is given below step by step.

Polynomial: x + 5x4 – 3 – 2.5x2

Steps Terms from
polynomial

Status of the singly linked list

Initially

Empty linked list

Step 1 Add the term
x with
coefficient = 1
exponent = 1

After adding 1st term of polynomial

 CH 6: Linked List 6.152

Steps Terms from
polynomial

Status of the singly linked list

Step 2 Add the term
5x4 with
coefficient = 5
exponent = 4 After adding 2nd term of polynomial

Step 3 Add the term
- 3 with
coefficient = -3
exponent = 0

After adding 3rd term of polynomial

Step 4 Add the term
- 2.5x2 with
coefficient = -2.5
exponent = 2

After adding 4th term of polynomial

From the above example it is clear that after receiving the exponents of successive terms of
the polynomial, a new node is created with that exponent and the new node is inserted at the
proper position into the singly linked list in such a way that the linked list remains sorted in
descending of the exponents always. The algorithm of creating a singly linked list to
represent a polynomial is given below.

Algorithm to create a singly linked list for polynomial representation:

Step 1: Start

Step 2: Set Head_Pointer of the linked list = NULL

Step 3: Input the number of terms of the polynomial into the variable ‘n’.

Step 4: Set i = 0

Step 5: Repeat Step 6 to Step 13 while i < n

Step 6: Input the coefficient of the term into the variable ‘coefficient’.

Step 7: Input the exponent of the term into the variable ‘exponent’.

Step 8: Create a new node pointed by New_Node_Pointer.

Step 9: Set New_Node_Pointer → coef = coefficient

Step 10: Set New_Node_Pointer → expo = exponent

Step 11: Set New_Node_Pointer → link = NULL

 CH 6: Linked List 6.153

Step 12: If Head_Pointer = NULL (Condition for empty linked list) OR
 Head_Pointer → expo < exponent of the term, then
a) Set New_Node_Pointer → link = Head_Pointer
b) Set Head_Pointer = New_Node_Pointer
Otherwise
c) Set ptr = Head_Pointer
d) Repeat e) while ptr → link ≠ NULL AND ptr → link → expo > exponential
e) Set ptr = ptr → link

[End of Loop (d)]
f) Set New_Node_Pointer → link = ptr → link
g) Set ptr → link = New_Node_Pointer

[End of If-Else (Step 12)]

Step 13: Set i = i + 1
[End of Loop (Step 5)]

Step 14: Set ptr = NULL

Step 15: Set New_Node_Pointer = NULL

Step 16: Stop

User defined function in C to create a singly linked list for polynomial representation

struct node *Create(struct node *headptr)
{

int n, exponent, i;
float coefficient;

printf("Enter the no. of terms of the polynomial: ");
scanf("%d", &n);

for(i=0; i<n; i++)
{

printf("Enter the coefficient of term %d: ", i+1);
scanf("%f", &coefficient);
printf("Enter the exponent of term %d: ", i+1);
scanf("%d", &exponent);
headptr = Insert(headptr, coefficient, exponent);

}
return headptr;

}

struct node *Insert(struct node *headptr, float coeff, int expon)
{

struct node *newnodeptr, *ptr;
newnodeptr = (struct node *)malloc(sizeof(struct node));
newnodeptr->coef = coeff;

 CH 6: Linked List 6.154

newnodeptr->expo = expon;
newnodeptr->link = NULL;

if(headptr == NULL || headptr->expo < expon)
{

newnodeptr->link = headptr;
headptr = newnodeptr;

}
else
{

ptr = headptr;
while(ptr->link != NULL && ptr->link->expo > expon)

ptr = ptr->link;

newnodeptr->link = ptr->link;
ptr->link = newnodeptr;

}
ptr = NULL;
newnodeptr = NULL;

return headptr;
}

Addition of Polynomials – Two polynomials can be added using singly linked lists.
Here two polynomials are represented by two sorted singly linked lists first in a descending
order of the exponents. During the addition of the polynomials the coefficients of likely nodes
with the equal exponents are added together and stored into the node of the resultant linked
list with same exponent and the other nodes with different exponents are directly copied into
the node of the resultant linked list. After the completion of the addition the nodes of the
resultant linked list are also arranged in descending order depending upon the exponents.
Thus the sorted resultant linked list holds the addition of the two singly linked lists
representing the two polynomials. The following example demonstrate the procedure of
addition.

 5x4 – 2.5x2 + x – 3

 + 6x6 + 1.5x5 – 2x4 – 2x + 7.5

6x6 + 1.5x5 + 3x4 – 2.5x2 – x + 4.5

 CH 6: Linked List 6.155

Algorithm of polynomial addition:

Step 1: Start

Step 2: Set Head_Pointer3 of the resultant linked list = NULL

Step 3: Set ptr1 = Head_Pointer1 (Head pointer of singly linked list for 1st polynomial)

Step 4: Set ptr2 = Head_Pointer2 (Head pointer of singly linked list for 2nd polynomial)

Step 5: Repeat Step 6 while ptr1 ≠ NULL AND ptr2 ≠ NULL

Step 6: If ptr1 → expo = ptr2 → expo, then
a) Add the coefficients and insert the newly created node into the sorted resultant

linked list.
b) Set ptr1 = ptr1 → link
c) Set ptr2 = ptr2 → link
Otherwise
d) If ptr1 → expo > ptr2 → expo, then
e) Insert the node pointed by ptr1 into the sorted resultant linked list
f) Set ptr1 = ptr1 → link

Otherwise
g) Insert the node pointed by ptr2 into the sorted resultant linked list
h) Set ptr2 = ptr2 → link

[End of If-Else (d)]
[End of If-Else (Step 6)]
[End of Loop (Step 5)]

Step 7: Repeat Step 8 and Step 9 while ptr1 ≠ NULL

Step 8: Insert the remaining nodes pointed by ptr1 into the resultant linked list

Step 9: Set ptr1 = ptr1 → link
[End of Loop (Step 7)]

Step 10: Repeat Step 11 and Step 12 while ptr2 ≠ NULL

Step 11: Insert the remaining nodes pointed by ptr2 into the resultant linked list

Step 12: Set ptr2 = ptr2 → link
[End of Loop (Step 10)]

Step 13: Stop

 CH 6: Linked List 6.156

User defined function in C to add two polynomials represented by two singly linked lists

struct node *PolyAdd(struct node *headptr1, struct node *headptr2)
{

struct node *headptr3 = NULL, *ptr1, *ptr2;

ptr1 = headptr1;
ptr2 = headptr2;

while(ptr1 != NULL && ptr2 != NULL)
{

if(ptr1->expo == ptr2->expo)
{

headptr3 = Insert(headptr3, ptr1->coef + ptr2->coef, ptr1->expo);
ptr1 = ptr1->link;
ptr2 = ptr2->link;

}
else if(ptr1->expo > ptr2->expo)
{

headptr3 = Insert(headptr3, ptr1->coef, ptr1->expo);
ptr1 = ptr1->link;

}
else
{

headptr3 = Insert(headptr3, ptr2->coef, ptr2->expo);
ptr2 = ptr2->link;

}
}

while(ptr1 != NULL)
{

headptr3 = Insert(headptr3, ptr1->coef, ptr1->expo);
ptr1 = ptr1->link;

}

while(ptr2 != NULL)
{

headptr3 = Insert(headptr3, ptr2->coef, ptr2->expo);
ptr2 = ptr2->link;

}

return headptr3;
}

 CH 6: Linked List 6.157

struct node *Insert(struct node *headptr, float coeff, int expon)
{

struct node *newnodeptr, *ptr;
newnodeptr = (struct node *)malloc(sizeof(struct node));
newnodeptr->coef = coeff;
newnodeptr->expo = expon;
newnodeptr->link = NULL;

if(headptr == NULL || headptr->expo < expon)
{

newnodeptr->link = headptr;
headptr = newnodeptr;

}
else
{

ptr = headptr;
while(ptr->link != NULL && ptr->link->expo > expon)

ptr = ptr->link;

newnodeptr->link = ptr->link;
ptr->link = newnodeptr;

}
ptr = NULL;
newnodeptr = NULL;

return headptr;
}

Now the entire C program to add two polynomials using singly linked list is given below for
better understanding of the readers.

Entire C program to add two polynomials represented by two singly linked lists

#include<stdio.h>
#include<stdlib.h>

struct node *Create(struct node *);
struct node *Insert(struct node *,float ,int);
void Display(struct node *);
struct node *PolyAdd(struct node *,struct node *);

struct node
{

float coef;
int expo;
struct node *link;

};

 CH 6: Linked List 6.158

int main()
{

struct node *head1 = NULL, *head2 = NULL, *head3 = NULL;

printf("Enter the 1st polynomial:\n\n");
head1 = Create(head1);

printf("Enter the 2nd polynomial:\n\n");
head2 = Create(head2);

printf("The 1st polynomial:\n\n");
Display(head1);

printf("The 2nd polynomial:\n\n");
Display(head2);

head3 = PolyAdd(head1, head2);

printf("The resultant polynomial:\n\n");
Display(head3);
return 0;

}

struct node *Create(struct node *headptr)
{

int n, exponent, i;
float coefficient;

printf("Enter the no. of terms of the polynomial: ");
scanf("%d", &n);

for(i=0; i<n; i++)
{

printf("Enter the coefficient of term %d: ", i+1);
scanf("%f", &coefficient);
printf("Enter the exponent of term %d: ", i+1);
scanf("%d", &exponent);

headptr = Insert(headptr, coefficient, exponent);
}

return headptr;
}

 CH 6: Linked List 6.159

struct node *Insert(struct node *headptr, float coeff, int expon)
{

struct node *newnodeptr, *ptr;

newnodeptr = (struct node *)malloc(sizeof(struct node));
newnodeptr->coef = coeff;
newnodeptr->expo = expon;
newnodeptr->link = NULL;

if(headptr == NULL || headptr->expo < expon)
{

newnodeptr->link = headptr;
headptr = newnodeptr;

}
else
{

ptr = headptr;
while(ptr->link != NULL && ptr->link->expo > expon)

ptr = ptr->link;

newnodeptr->link = ptr->link;
ptr->link = newnodeptr;

}
ptr = NULL;
newnodeptr = NULL;
return headptr;

}

struct node *PolyAdd(struct node *headptr1, struct node *headptr2)
{

struct node *headptr3 = NULL, *ptr1, *ptr2;
ptr1 = headptr1;
ptr2 = headptr2;
while(ptr1 != NULL && ptr2 != NULL)
{

if(ptr1->expo == ptr2->expo)
{

headptr3 = Insert(headptr3, ptr1->coef + ptr2->coef, ptr1->expo);
ptr1 = ptr1->link;
ptr2 = ptr2->link;

}
else if(ptr1->expo > ptr2->expo)
{

headptr3 = Insert(headptr3, ptr1->coef, ptr1->expo);
ptr1 = ptr1->link;

}
else
{

headptr3 = Insert(headptr3, ptr2->coef, ptr2->expo);
ptr2 = ptr2->link;

}

 CH 6: Linked List 6.160

}
while(ptr1 != NULL)
{

headptr3 = Insert(headptr3, ptr1->coef, ptr1->expo);
ptr1 = ptr1->link;

}
while(ptr2 != NULL)
{

headptr3 = Insert(headptr3, ptr2->coef, ptr2->expo);
ptr2 = ptr2->link;

}
return headptr3;

}

void Display(struct node *headptr)
{

struct node *ptr = headptr;
while(ptr != NULL)
{

if(ptr->expo == 0)
{

if(ptr == headptr && ptr->coef > 0)
printf("%.1f ",ptr->coef);

else if(ptr->coef > 0)
printf("+ %.1f ",ptr->coef);

else
printf("- %.1f ", (-1)*ptr->coef);

}
else
{

if(ptr == headptr && ptr->coef > 0)
printf("%.1fx^%d ",ptr->coef, ptr->expo);

else if(ptr->coef > 0)
printf("+ %.1fx^%d ",ptr->coef, ptr->expo);

else
printf("- %.1fx^%d ", (-1)*ptr->coef, ptr->expo);

}

ptr = ptr->link;
}

printf("\n\n");

ptr = NULL;
}

Chapter 7

Searching and Sorting

 CH 7: Searching and Sorting 7.1

Searching – Searching is a method by which it is checked whether a particular
value is present or not in a set of values. Normally the list of values are stored in an
array and the value which is to be searched is taken into a variable. The value which is
to be searched is known as key value. If the key value is found in the array, the index
of the array or the position where the key value is found is printed and if it is not
found, an error message “The value is not found” is displayed. Here we shall discuss
the two searching techniques namely linear search and binary search.

1) Linear Search – In case of linear search the list of numbers may be sorted or
unsorted. The key element which is to be searched in an unsorted array is compared
with each and every element one by one. If any element in the array matches with the
key element, the position or the index of that element will be displayed on the screen
to indicate that the key element is found in the array. Once the key element is found,
further comparison beyond the matched element is not required and the searching
process should be stopped. If there is no matching with any of the elements of the
array, a message “Element is not found” will be printed. For this purpose we have to
go through the following example.

Suppose we have a list of elements like 29, 45, 85, 10, 7, 36, 63, 50, 15, 23 and the
key element 36. The procedure to search the key element is given step by step in
Fig.7.1.
 Key element = 7
 Comp1

29 45 85 10 7 36 63 50 15 23

Index → 0 1 2 3 4 5 6 7 8 9

 7 ≠ 29
 Comp2

29 45 85 10 7 36 63 50 15 23

Index → 0 1 2 3 4 5 6 7 8 9

 7 ≠ 29
 Comp3

29 45 85 10 7 36 63 50 15 23

Index → 0 1 2 3 4 5 6 7 8 9

 7 ≠ 29
 Comp4

29 45 85 10 7 36 63 50 15 23

Index → 0 1 2 3 4 5 6 7 8 9

 7 ≠ 29
 Comp5

29 45 85 10 7 36 63 50 15 23

Index → 0 1 2 3 4 5 6 7 8 9

 7 = 7
Key element 7 is found at index = 4 or position = 5

Fig.7.1: Searching process of linear search step by step

 CH 7: Searching and Sorting 7.2

Algorithm of linear search:

Step 1: Start

Step 2: Input the no. of elements in a variable ‘n’.

Step 3: Input the list of n no. of elements into an array ‘a’.

Step 4: Input the key element in a variable ‘key’.

Step 5: Set Index = - 1

Step 6: Set i = 0

Step 7: Repeat Step 8 to Step 9 while i < n

Step 8: If a[i] = key, then
a) Set Index = i

Print “The key element is found at position Index + 1 ”.
Go to Step 11

[End of If (Step 8)]

Step 9: Set i = i + 1
[End of Loop (Step 7)]

Step 10: If Index = - 1, then
a) Print “The key element is not found”.
[End of If (Step 10)]

Step 11: Stop

C program to search an element from a set of numbers using linear search.

#include<stdio.h>
int Lsearch(int [],int ,int);

int main()
{

int a[50], i, n, key, result;

printf("Enter the number of elements: ");
scanf("%d", &n);
printf("Enter the elements of the array:\n");
for(i=0; i<n; i++)
{

printf("Enter Element%d: ", i+1);
scanf("%d", &a[i]);

}

 CH 7: Searching and Sorting 7.3

printf("Enter the value of the element to be searched: ");
scanf("%d", &key);

result = Lsearch(a, n, key);

if(result == -1)
printf("The element is not found.\n");

else
printf("The element is found at position %d\n", result + 1);

return 0;
}

int Lsearch(int arr[],int len,int k)
{

int i;

for(i=0; i<len; i++)
{

if(arr[i] == k)
return i;

}

return -1;
}

In the above C program of linear search the index value of the matched element is
returned if the key element is found in the list, otherwise -1 is returned by the user-
defined function “Lsearch” to indicate that the key element is not found. The returned
value is selected as -1, because -1 is an invalid index for an array in C and this does
not coincide with a valid index which may be returned any time for a successful
searching.

Time complexity of linear search – Time complexity of a linear search depends on
the position where the key element is matched. There are two cases here to determine
the time complexity, one is the time complexity for best case and another is the time
complexity for worst case.

Best case: If the key element is found at the 1st position or the index 0 of the array, it
consumes minimum time to complete the linear search procedure. That’s why it
becomes the best case. Now it requires only one comparison to find the key element
in the list of numbers. Therefore the time complexity of linear search becomes O(1)
for the best case.

Worst case: If the key element is found at the last position or (n – 1)th index of the
array or the key element is not found in the list, it requires (n – 1) no. of comparisons
to accomplish the linear search. Hence obviously it takes maximum time to complete
the searching and time complexity becomes O(n) for the worst case.

 CH 7: Searching and Sorting 7.4

Advantages of linear search:
1. It is very much easy to understand and implement.
2. Linear search can be applied on sorted as well as unsorted list.
3. A new element can be added at the last always in case of an unsorted array. This

insertion does not require shifting of any element inside the array. Therefore
insertion of a new element to an unsorted array does not affect the process of linear
search.

4. Linear search can be implemented using both array and linked list.

Disadvantages of linear search:
1. As the time complexity of linear search is O(n) for worst case, it takes longer time

to search an element placed at the end of the array. For example, if one comparison
takes 1 unit of time, then linear search will take 1024 units of time to search an
element placed at the last position of the unsorted array. Therefore linear search is
inefficient for large datasets.

2) Binary Search – Binary search is a searching algorithm that is applicable only
for sorted list i.e. a set of numbers either in ascending order or descending order.
Consider a sorted list of numbers which are arranged in ascending order. Here the
element at mid position of the list is compared with the key element. If the key
element and the element at the mid position are equal, the position of that element in
the list is displayed to indicate that the key element has been found in the list. If the
key element is greater than the element, it can be said easily that the key element may
be found only in the right sub-list after the mid-element as the right sub-list consists
of the elements which are all larger than the mid-element. Again the mid-element
from the right sub-list is compared with the key element. On the other hand if the key
element becomes smaller than the mid-element, then it may be possible to find out the
key element only in the left sub-list before the mid-element. Due to this reason the
mid-element from the left sub-list is again compared with the key element. This
process will continue until the key element becomes equal to the mid-element or the
key element is not found in the sub-list of one element.

So, we can write in summary,

A set of n no. of elements are stored in a sorted array ‘a’ in ascending order.

MidIndex = (StartIndex + EndIndex) / 2 where StartIndex = 0 and EndIndex = n – 1

1. If key element = a[MidIndex], key element is found at position (MidIndex + 1)

2. If key element > a[MidIndex], the key element is searched into the right sub-array
in which StartIndex = MidIndex + 1 and EndIndex = n – 1.

3. If key element < a[MidIndex], the key element is searched into the left sub-array
in which StartIndex = 0 and EndIndex = MidIndex - 1.

The procedure of binary search can be understood easily with the help of the
following example.

 CH 7: Searching and Sorting 7.5

Consider a list of ten elements 8, 15, 28, 52, 68, 69, 78, 89, 90, 98 are stored in a
sorted array ‘a’ in ascending order and the key element which is to be searched is 78.
Therefore the array ‘a’ starts from the index 0 and ends at the index 9. Here StartIndex
= 0 and EndIndex = 9. So the MidIndex becomes (0 + 9)/2 i.e. 4. Now the procedure
of binary search is shown step by step in Fig.7.2.

MidIndex = (StartIndex + EndIndex) / 2
Key element = 78

 ← Left Sub-array → Comp1 ← Right Sub-array →
8 15 28 52 68 69 78 89 90 98

Index → 0 1 2 3 4 5 6 7 8 9

↑
StartIndex

↑
MidIndex

↑
EndIndex

 78 > 68

 ← Left Sub-array→ Comp2 ←Right Sub-array→

8 15 28 52 68 69 78 89 90 98

Index → 0 1 2 3 4 5 6 7 8 9

↑
StartIndex

↑
MidIndex

↑
EndIndex

 78 < 89

 Right
 Sub-array

 Comp3 ←→
8 15 28 52 68 69 78 89 90 98

Index → 0 1 2 3 4 5 6 7 8 9

↑
StartIndex
MidIndex

↑
EndIndex

 78 > 69

 Comp4

8 15 28 52 68 69 78 89 90 98

Index → 0 1 2 3 4 5 6 7 8 9

↑
StartIndex
MidIndex
EndIndex

 78 = 78

Key element 78 is found at index = 6 or position = 7

Fig.7. 2 : Searching process of binary search step by step

 CH 7: Searching and Sorting 7.6

Algorithm of binary search:

Step 1: Start

Step 2: Input the no. of elements in a variable ‘n’.

Step 3: Input the list of n no. of elements into an array ‘a’.

Step 4: Input the key element in a variable ‘key’.

Step 5: Set Index = - 1

Step 6: Set StartIndex = 0

Step 7: Set Endndex = n – 1

Step 8: Repeat Step 9 to Step 11 while StartIndex ≤ EndIndex

Step 9: Set MidIndex = (StartIndex + EndIndex) / 2

Step 10: If a[MidIndex] = key, then
a) Set Index = MidIndex

Print “The key element is found at position Index + 1 ”.
Go to Step 11

[End of If (Step 10)]

Step 11: If a[MidIndex] > key, then
a) Set EndIndex = MidIndex – 1
Otherwise
b) Set StartIndex = MidIndex + 1
[End of If-Else (Step 11)]

[End of Loop (Step 8)]

Step 12: If Index = - 1, then
a) Print “The key element is not found”.
[End of If (Step 12)]

Step 13: Stop

Now the above mentioned algorithm of binary search can be implemented without
using recursion or using recursion in C language. These two ways of implementations
are given below.

 CH 7: Searching and Sorting 7.7

C program to search an element from a set of numbers using binary search
without using recursion.

#include<stdio.h>
int Bsearch(int [],int ,int);

int main()
{

int a[50], i, n, key, result;

printf("Enter the number of elements: ");
scanf("%d", &n);
printf("Enter the elements of the array:\n");
for(i=0; i<n; i++)
{

printf("Enter Element%d: ", i+1);
scanf("%d", &a[i]);

}
printf("Enter the value of the element to be searched: ");
scanf("%d", &key);

result = Bsearch(a, n, key);

if(result == -1)
printf("The element is not found.\n");

else
printf("The element is found at position %d\n", result + 1);

return 0;
}

int Bsearch(int arr[],int len,int k)
{

int i = 0, StartIndex, EndIndex, MidIndex;
StartIndex =0;
EndIndex = len - 1;
while(StartIndex <= EndIndex)
{

MidIndex = (StartIndex + EndIndex) / 2;
if(arr[MidIndex] == k)

return MidIndex;
if(arr[MidIndex] > k)

EndIndex = MidIndex - 1;
else

StartIndex = MidIndex + 1;
}
return -1;

}

 CH 7: Searching and Sorting 7.8

C program to search an element from a set of numbers using binary search
using recursion.

#include<stdio.h>
int Bsearch(int [],int ,int);

int main()
{

int a[50], i, n, key, result;

printf("Enter the number of elements: ");
scanf("%d", &n);
printf("Enter the elements of the array:\n");
for(i=0; i<n; i++)
{

printf("Enter Element%d: ", i+1);
scanf("%d", &a[i]);

}
printf("Enter the value of the element to be searched: ");
scanf("%d", &key);

result = Bsearch(a, n, key);

if(result == -1)
printf("The element is not found.\n");

else
printf("The element is found at position %d\n", result + 1);

return 0;
}

int Bsearch(int arr[],int StartIndex,int EndIndex,int k) .
{

int i = 0, MidIndex;
if(StartIndex <= EndIndex)
{

MidIndex = (StartIndex + EndIndex)/2;

if(arr[MidIndex] == k)
return MidIndex;

if(arr[MidIndex] > k)
return Bsearch(arr, StartIndex, MidIndex -1, k);

return Bsearch(arr, MidIndex + 1, EndIndex, k);
}
return -1;

}

 CH 7: Searching and Sorting 7.9

Time complexity of binary search – Here we have to consider the two situations for
time complexity – 1. best case and 2. worst case.

Best case: When the same value of the key element is placed at the mid position of
the array, it will match at the first chance. This takes the minimum time to complete
the binary search and gives the bast case of searching. Therefore the time complexity
of binary search becomes O(1) for best case.

Worst Case: The binary search algorithm takes maximum time to be executed when
the key element is found at last i.e. when the sub-array consists of one element and
that element becomes equal to the key element. In addition to this there is another
situation to get the worst case when the key element is not found in the list. In this
case the binary search algorithm has to go till the last sub-list of only one element.

We know every sub-array accomplish one comparison between the key element and
the mid-element. Now we have to determine how many arrays to be searched to get
ultimately an array of one element. Suppose we shall reach to an array of one element
after k no. searching.

SL. No. of elements in array/ sub-arrays No. of comparisons

1 No. of elements in 1st array = n 1 comparison in 1st array

2 No. of elements in 2nd array ≈ n / 2 1 comparison in 2nd array

3 No. of elements in 3rd array ≈ n / 4 = n / 22 1 comparison in 3rd array

4 No. of elements in 4th array ≈ n / 8 = n / 23 1 comparison in 4th array

:
:

 :
 :

 :
 :

k No. of elements in kth array ≈ n / 2k-1 1 comparison in kth array

Total no. of comparisons = k

Now we know,
 No. of elements in kth array = 1 = n / 2k-1

 or, 2k-1 = n

 or, k – 1 = log2 n

 .·. k = log2 n + 1

Total no. of comparisons required for binary search in worst case = k = log2 n + 1

.·. Time complexity of binary search for worst case = O(log2 n)

 CH 7: Searching and Sorting 7.10

Advantages of binary search:
1. The time complexity of a binary search is O(log2 n) which makes the binary

search efficient for large set of data. If we want to search a data in a set of 1024
data using binary search, it requires only 10 comparisons in worst case where as
linear search would perform 1024 comparisons in worst case. Therefore it is clear
that binary search is more time efficient that linear search for large data-set.

Disadvantages of binary search:
1. Binary search only works on sorted arrays. If the array is not sorted, it must be

sorted before the application of binary search. Therefore binary search is not
suitable for unsorted list.

2. Binary search can be implemented by using array only, it can not be implemented
with the help of linked list.

3. As the list must be sorted before the use of binary search, insertion of a new
element into a sorted array requires shifting of elements. Therefore insertion of
element affect the performance of binary search.

Comparative study between linear search and binary search:

SL. Linear search Binary search

1 Time complexity is O(n) for worst
case and O(1) for best case.

Time complexity is O(log2 n) for worst
case and O(1) for best case.

2 It is applicable for both sorted and
unsorted list.

It is only applicable for sorted list, but
not applicable for unsorted list.

3 It can be implemented by using
both array and linked list.

It can be implemented only by using
array, but not for linked list.

4 It can not be applied for large set of
data.

It can be applied for large set of data.

5 Insertion of element does not affect
the performance of linear search.

Insertion of element affects the
performance of binary search
significantly.

6 The algorithm of linear search is
very easy to understand and
implement

The algorithm of binary search is
cumbersome to implement compared to
linear search.

 CH 7: Searching and Sorting 7.11

Sorting – Sorting is a method by which a list of numerical values or alphanumerical
values are arranged in ascending or descending order in an efficient way. After sorting
the list of values is called a sorted list. Consider an array holding a set of ten values as
given below.

29 45 85 10 7 36 63 50 15 23

Index → 0 1 2 3 4 5 6 7 8 9

After sorting the above list in ascending order it will be a sorted list as given below.

7 10 15 23 29 36 45 50 63 85

Index → 0 1 2 3 4 5 6 7 8 9

If this list is sorted in descending order the sorted list will be given as follows.

85 63 50 45 36 29 23 15 10 7

Index → 0 1 2 3 4 5 6 7 8 9

Efficient sorting algorithms are used to optimize the use of other algorithms like
search and merge algorithms which requires sorted list to work correctly. We know
that the binary search can only be applied on a list if the list is sorted. Therefore the
list must be arranged in ascending or descending order by using an efficient sorting
algorithm in order to use the binary search algorithm on it. Depending upon the use of
internal and external memory in computer there are two types of sorting, 1) Internal
sorting and 2) External sorting.

1) Internal sorting – If the data sorting process takes place entirely into the internal
memory or main memory (basically RAM) of a computer, it is called internal sorting.
This is only possible if the size of a data to be sorted is small enough to fit into the
main memory of the computer. Some examples of internal sorting are bubble sort,
insertion sort, selection sort, quick sort, heap sort etc.

2) External sorting – If the data set to be sorted is massive in size, it is not possible
to accommodate the entire data set into the internal memory or main memory of the
computer and the rest of the data set is stored into the slower external memory
(usually a hard drive) of the computer. This sorting process is called external sorting.

External sorting uses a hybrid sort-merge strategy which is basically composed of two
phases, one is sort phase and another is merge phase. In sort phase chunks of data
which are small enough to fit into the main memory are transferred to the main
memory, then these small chunks of data are sorted in the main memory and finally
written back to a temporary file into the external memory. In the merge phase these
sorted sub-files are combined or merged into a sorted single larger file. One example
of external sorting is merge sort.

 CH 7: Searching and Sorting 7.12

Comparative study between internal sort and external sort:

SL. Internal sort External sort

1 All the data to be sorted is stored in
main memory or internal memory
of the computer at all times while
sorting is in progress.

The entire data set in this case is sorted
using internal as well as external
memory of the computer. Sorting is done
into the internal memory and merging is
done into the external memory.

2 It is performed when the data to be
sorted is small enough to fit into the
main memory.

External sorting is usually applied when
data is too large to fit into the main
memory.

3 In this case the storage device used
is only main memory (RAM) of the
computer

In this case the storage devices are both
external memory (hard drive) and the
internal memory (RAM) of the
computer.

4 Examples: bubble sort, insertion
sort, selection sort, quick sort, heap
sort etc.

Example: merge sort.

Depending upon how much space is used by a sorting algorithm there are two types of
sorting. 1) In-place sorting and 2) Non-in-place sorting

1) In-place sorting – An in-place sorting algorithm uses constant memory space for
producing the output i.e. the sorted data set. It sorts the list only by modifying the
order of the elements within the list. Examples of in-place sorting algorithm are
bubble sort, insertion sort, selection sort, quick sort etc as they do not use any
additional space for sorting the whole list of data.

2) Non-in-place sorting – On the contrary in case of non-in-place sorting the sorting
algorithm uses additional memory space which usually increases with the increase of
input size i.e. with the increase of input data set. So the auxiliary space complexity of
a non-in-place sorting becomes O(n) where n is the number of elements in the input
data set. Examples of non-in-place sorting are merge sort and counting sort. In case of
merge sort an additional array is used to merge all the data into a sorted one. Due to
the use of an extra array space merge sort is a non-in-place sorting.

Depending upon the stability of the sorting algorithm there are two types namely
1) Stable sort and 2) Unstable sort.

1) Stable sort – After applying a sorting technique if two same elements appear in the
same order as the original unsorted list without changing their positions, then the
sorting algorithm is called stable sort. It implies that between the two same elements
the element which placed first in the original list will be placed first in the sorted list
and the element which comes second position will be placed just after the first
element. Examples of some stable sorts are bubble sort, insertion sort, merge sort etc.

 CH 7: Searching and Sorting 7.13

2) Unstable sort – After applying a sorting algorithm if two same elements
interchange their positions in the sorted list i.e. first element is placed after the second
element in the sorted list, then the sorting algorithm is known as unstable sort.
Selection sort and quick sort are the examples of two unstable sorts.

Let’s take an example to understand the stable and unstable sort clearly. Suppose we
have an unsorted list of ten elements like 11, 25, 15, 19, 7, 48, 39, 15, 17, 20. Here we
can observe the two same elements are 15. To clarify the positions of these two
elements the first 15 is designated as 15A and the second 15 as 15B. Now the original
unsorted list looks like 11, 25, 15A, 19, 7, 48, 39, 15B, 17, 20. After the application of a
sorting algorithm SORTA if the sorted list will be 7, 11, 15A, 15B, 17, 19, 20, 25, 39,
48 where first 15 (designated as 15A) and the second 15 (designated as 15B) are placed
first and second respectively in the sorted list maintaining the same order of original
list, then SORTA will be a stable sort. If the same unsorted list is sorted with the help
of another sorting technique SORTB which gives a sorted list 7, 11, 15B, 15A, 17, 19,
20, 25, 39, 48 where the two same elements 15A and 15B have interchanged their
positions (15B becomes first and 15A becomes second), then SORTB will be an
unstable sort.

Importance of the stability of a sorting algorithm – Now the common query may
come in our mind “Why do we need to analyze the stability of a sorting algorithm ?”.
For this purpose we may consider the following practical example.

Suppose in a examination hall an invigilator is collecting the answer scripts of some
students. A ranking list will be published after the examination depending upon their
obtained marks. In the stack of the answer scripts collected by the invigilator the
student who comes at the bottom of the stack has submitted his answer script first,
then the student after that student in the stack has submitted the answer script second
and so on. Now if two students score the same marks what will be the ranking of
them. Here the student whose answer script is kept below the stack has submitted the
answer script before the student who has obtained the same marks. Therefore the
student below the stack will be ranked first. After evaluating the answer scripts the
examiner will arrange the answer scripts in descending order using a sorting technique
depending upon the obtained marks and the sorting technique used by the examiner
must be a stable sort to publish the ranks correctly, otherwise those two students with
same marks may be ranked wrong. Thus the sorted stack in descending order gives the
1st rank for the topmost answer script, 2nd rank for the answer script placed just below
the topmost answer script and so on.

Before explaining the different sorting techniques some practical considerations of
internal sorting should be focused to analyze the performance of the sorting
algorithms.

 CH 7: Searching and Sorting 7.14

Sorting on multiple keys – Many times when performing real-world applications, it
is desired to sort the records of multiple fields such as the records of some students in
a college with multiple fields like Student Name, Roll No., Department, Phone No.
etc. If these records are to be sorted according to their departments and name, then
after successful sorting the departments will be in ascending order and under each
department the students will be sorted depending upon their names. In this case the
records should be sorted using the field ‘Department’ first, then again all the records
under each department will be sorted as per their names. Thus the first field
‘Department’ here is called the primary sort key and the second field ‘Student Name’
will be the secondary sort key. Consider the following example.

Unsorted records of five students

Student Name Roll No. Department Phone No.

Ritam ECE/23/01 ECE 8240566955

Bipasha CSE/23/11 CSE 9432987654

Debatma ECE/23/48 ECE 9836123456

Anusree CSE/23/50 CSE 7094235128

Sreejan ECE/23/16 ECE 9433554433

After sorting on primary key ‘Department’

Student Name Roll No. Department Phone No.

Bipasha CSE/23/11 CSE 9432987654

Anusree CSE/23/50 CSE 7094235128

Ritam ECE/23/01 ECE 8240566955

Debatma ECE/23/48 ECE 9836123456

Sreejan ECE/23/16 ECE 9433554433

After sorting on secondary key ‘Student Name’

Student Name Roll No. Department Phone No.

Anusree CSE/23/50 CSE 7094235128

Bipasha CSE/23/11 CSE 9432987654

Debatma ECE/23/48 ECE 9836123456

Ritam ECE/23/01 ECE 8240566955

Sreejan ECE/23/16 ECE 9433554433

Observe that the records are sorted based on department. However, within each
department the records are sorted alphabetically based on the names of the students.

 CH 7: Searching and Sorting 7.15

We know the elements to be sorted are stored in an array normally. But in case of
sorting the records with multiple fields it is better to store the records in a linked list
where each node of the linked list will hold these multiple fields.

Practical considerations of sorting – While analyzing the performance of different
sorting algorithms, we should consider the following practical considerations.

1. Number of sort keys based on which sorting will be performed.

2. Number of times the records will be moved to get the final sorted list.

3. The sorting algorithm used is in-place sorting or not to determine that the extra
space will be required or not.

4. Best case time complexity to analyze the performance of the sorting algorithm.

5. Worst case time complexity to analyze the performance of the sorting algorithm
and this parameter is most important to measure the faster performance of the
sorting technique for a large data set.

6. Average case time complexity to analyze the performance of the sorting algorithm.

7. Stability of the sorting algorithm where stability means that equivalent elements or
records retain their relative positions even after sorting is done.

Now six different sorting techniques – bubble sort, selection sort, insertion sort, quick
sort, merge sort and heap sort will be discussed one by one in the next section.

1) Bubble sort – Bubble sort is a very simple method that sorts the elements in
ascending order by repeatedly moving the largest element to the highest index
position of the array segment after each pass. In bubble sort, consecutive adjacent
pairs of elements in the array are compared with each other. If the element at the
lower index is greater than the element at the higher index, the two elements are
swapped. This process will continue till the list of unsorted elements exhausts. Note
that at the end of the first pass, the largest element in the list will be placed at the end
which is the proper position for the largest element in the sorted list. Therefore the
largest element placed at the end of the list is not required to consider during the
second pass and the second pass will be done with (n – 1) no. of elements. After
completion of the second pass the second largest element will be placed at its proper
position, just before the largest element. Similar case will occur during the third pass
which will place the third largest element just before the second largest element. This
process will continue until we get a pass where no swapping takes place between pair
of consecutive elements or a pass with only two elements. The entire process of the
bubble sort may be better understood with following example which is shown step by
step in Fig.7.3.

 CH 7: Searching and Sorting 7.16

P
as

s
1

 Comp1

29 45 85 7 10 36

Index → 0 1 2 3 4 5

 29 < 45 →No Swap

 Comp2

29 45 85 7 10 36

Index → 0 1 2 3 4 5

 45 < 85 →No Swap

 Comp3

29 45 85 7 10 36

Index → 0 1 2 3 4 5

 85 > 7 → Swap

 Comp4

29 45 7 85 10 36

Index → 0 1 2 3 4 5

 85 > 10 → Swap

 Comp5

29 45 7 10 85 36

Index → 0 1 2 3 4 5

 85 > 36 → Swap

29 45 7 10 36 85

Index → 0 1 2 3 4 5

 Largest element 85 is placed at its proper position 6

P
as

s
2

 Comp1

29 45 7 10 36 85

Index → 0 1 2 3 4 5

 29 < 45 →No Swap

 Comp2

29 45 7 10 36 85

Index → 0 1 2 3 4 5

 45 > 7 →Swap

 CH 7: Searching and Sorting 7.17

P
as

s
2

 Comp3

29 7 45 10 36 85

Index → 0 1 2 3 4 5

 45 > 10 → Swap

 Comp4

29 7 10 45 36 85

Index → 0 1 2 3 4 5

 45 > 36 → Swap

29 7 10 36 45 85

Index → 0 1 2 3 4 5

 Second largest element 45 is placed at its proper position 5

P
as

s
3

 Comp1

29 7 10 36 45 85

Index → 0 1 2 3 4 5

 29 > 7 → Swap

 Comp2

7 29 10 36 45 85

Index → 0 1 2 3 4 5

 29 > 10 → Swap

 Comp3

7 10 29 36 45 85

Index → 0 1 2 3 4 5

 29 < 36 → No Swap

7 10 29 36 45 85

Index → 0 1 2 3 4 5

 Third largest element 36 is placed at its proper position 4

 CH 7: Searching and Sorting 7.18

P
as

s
4

 Comp1

7 10 29 36 45 85

Index → 0 1 2 3 4 5

 7 < 10 → No Swap

 Comp2

7 10 29 36 45 85

Index → 0 1 2 3 4 5

 10 < 29 → No Swap

7 10 29 36 45 85

Index → 0 1 2 3 4 5

 Fourth largest element 29 is placed at its proper position 3

In this pass no swapping is done, which implies that the list is sorted
completely. Therefore Pass 4 is not required.

7 10 29 36 45 85

Index → 0 1 2 3 4 5

 Final sorted list in ascending order using bubble sort

F ig.7.3: Step by step execution of bubble sort

From Fig.7.3 it is evident that if there would be at least one swapping in Pass 4, one
more pass would be executed to complete the bubble sort. That means in normal case
5 passes should be executed for an unsorted list with 6 elements. Finally we can
conclude the following points in case of a bubble sort.

• There will be (n – 1) no. of passes in a bubble sort for an unsorted list with n no. of
elements.

• If no swapping happens in any pass during the execution of the bubble sort, it
implies that the list is already sorted. Hence no pass is required to be executed
further. In that case no. of passes will be less than (n – 1).

• Every comparison is done between a pair of adjacent elements. If the element at the
lower index is larger than the element at the higher index, the two elements are
swapped.

 CH 7: Searching and Sorting 7.19

• There will be (n – 1) no. of comparisons during 1st pass, (n – 2) comparisons during
2nd pass, (n – 3) comparisons during 3rd pass and so on. Therefore 1 comparison
will be conducted during the (n – 1)th pass in the bubble sort.

• After completion of every pass the length of the unsorted list is decremented by one
and the largest element in the segment of the array during that pass will be placed
at the end which is the proper position of that element in the final sorted list.

To implement bubble sort we have to use two nested loops, the outer loop for
counting the number of passes and the inner loop for performing comparisons in a
particular pass. In addition to this a swap_flag is used to track whether at least one
swapping happens or not. The algorithm of bubble sort is given below.

Algorithm of bubble sort:

Step 1: Start

Step 2: Input the no. of elements in a variable ‘n’.

Step 3: Input the unsorted list of n no. of elements into an array ‘a’.

Step 4: Set i = 1

Step 5: Repeat Step 6 to Step 12 while i < n

Step 6: Set SwapFlag = 0

Step 7: Set j = 0

Step 8: Repeat Step 9 to Step 10 while j < n – 1

Step 9: If a[j] > a[j+1], then
a) Set temp = a[j]
b) Set a[j] = a[j+1]
c) Set a[j+1] = temp
[End of If (Step 9)]

Step 10: Set j = j + 1
[End of Loop (Step 8)]

Step 11: If SwapFlag = 0, then
a) Go to Step 13
[End of If (Step 11)]

Step 12: Set i = i + 1
[End of Loop (Step 5)]

Step 13: Stop

 CH 7: Searching and Sorting 7.20

C program to arrange a set of numbers in ascending order using bubble sort.

#include<stdio.h>
void BubbleSort(int [],int);

int main()
{

int a[50], i = 0, n;

printf("Enter the number of elements: ");
scanf("%d", &n);
printf("Enter the elements of the array:\n");
for(i=0; i<n; i++)
{

printf("Enter Element%d: ", i+1);
scanf("%d", &a[i]);

}
BubbleSort(a, n);

printf("Sorted List Using Bubble Sort: ");
for(i=0; i<n; i++)

printf("%d ", a[i]);

printf("\n");
return 0;

}

void BubbleSort(int arr[],int len)
{

int i, j, temp, SwapFlag;

for(i=1; i<len; i++)
{

SwapFlag = 0;
for(j=0; j<len-i; j++)
{

if(arr[j] > arr[j+1])
{

temp = arr[j];
arr[j] = arr[j+1];
arr[j+1] = temp;
SwapFlag = 1;

}
}
if(SwapFlag == 0)

break;
}

}

 CH 7: Searching and Sorting 7.21

Time complexity of bubble sort – To calculate the time complexity of bubble sort
we have to consider the number of times comparisons happened to complete the
bubble sort in best case and worst case.

Best case: In best case bubble sort takes minimum time to be executed and this
situation happens when the list is already in sorted order. When this situation arises,
only one pass (only 1st pass) will be executed to complete the bubble sort. We know
(n – 1) no. of comparisons will be accomplished to complete the 1st pass in a bubble
sort. Therefore time complexity of the bubble sort will be O(n) for best case.

Worst case: Worst case will happen when the unsorted list is in descending order and
the list will have to be sorted in ascending order using bubble sort. In this situation
there will be (n – 1) no. of passes and the swapping will happen between two adjacent
elements for every comparison.

For 1st pass, no. of comparisons = n – 1

For 2nd pass, no. of comparisons = n – 2

For 3rd pass, no. of comparisons = n – 3

In this way no. of comparisons for (n – 1)th pass = 1

.·. Total no. of comparisons = (n – 1) + (n – 2) + (n – 3) + ………… + 1

 = 1 + 2 + 3 + ………….. + (n – 2) + (n – 1)

 =
(n−1)(n−1+1)

2

 =
n(n−1)

2
 =

(n2
−n)
2

Therefore the time complexity of a bubble sort becomes O(n2) for worst case.

Average case: The time complexity of bubble sort in average case is O(n2).

In-place sorting – Bubble sort does not require any extra space. That’s why it is an
in-place sorting.

Stability of bubble sort – Bubble sort is a stable sorting technique.

Advantages of bubble sort:
1. It is easy to understand and implement.
2. It does not require extra memory space which makes the space complexity O(1).
3. It is a stable sorting algorithm.

 CH 7: Searching and Sorting 7.22

Disadvantages of bubble sort:
1. Selection sort has time complexity of O(n2) in worst case and average case. This

makes the bubble sort slower than other sorting techniques. Due to this reason
bubble sort should not be used in large data set.

2. During the execution of bubble sort multiple number of swapping between the
adjacent elements may happen. For every swapping memory write operation is
performed which makes this sorting slower.

2) Selection sort – In this sorting after completion of every pass the minimum
element from the list will be placed at the first position. As the first position is the
correct position for the minimum element in a list, the selection sort puts the
minimum element at its right position in this way. However the minimum element
from the entire unsorted list will be placed at the first position (index = 0) of the array
after the 1st pass. During the 2nd pass the first element is excluded and the minimum
element from the remaining (n – 1) no. of elements of the array is selected and it will
be placed at the 2nd position (index = 1) of the array which becomes the proper
position of it. Thus the several passes are executed in selection sort to result the final
sorted list in ascending order. If it is desired to sort the list in descending order using
the selection sort, each time the minimum element will be placed at the end of the list.
To determine the minimum element in every pass we have to find out the index of the
minimum element by using a variable min_index. Then the first element and the
element at min_index will be swapped to place the minimum element at the 1st

position. The process of the selection sort has been demonstrated step by step in
Fig.7.4 with the help of an example.

P
as

s
1

 Comp1

29 45 85 7 10 36

Index → 0 1 2 3 4 5

↑
min_index

↑
j

 29 < 45 →min_index unchanged

 Comp2

29 45 85 7 10 36

Index → 0 1 2 3 4 5

↑
min_index

↑
j

 29 < 85 →min_index unchanged

 Comp3

29 45 85 7 10 36

Index → 0 1 2 3 4 5

↑
min_index

↑
j

 29 > 7 → min_index = j

 CH 7: Searching and Sorting 7.23

P
as

s
1

 Comp4

29 45 85 7 10 36

Index → 0 1 2 3 4 5

↑
min_index

↑
j

 7 < 10 → min_index unchanged

 Comp5

29 45 85 7 10 36

Index → 0 1 2 3 4 5

↑
min_index

↑
j

 7 < 36 → min_index unchanged

 29 (a[0]) and 7 (a[min_index]) swapped

7 45 85 29 10 36

Index → 0 1 2 3 4 5

↑
min_index

↑
j

 Smallest element 7 is placed at its proper position 1 (index = 0)

P
as

s
2

 Comp1

7 45 85 29 10 36

Index → 0 1 2 3 4 5

↑
min_index

↑
j

 45 < 85 →min_index unchanged

 Comp2

7 45 85 29 10 36

Index → 0 1 2 3 4 5

↑
min_index

↑
j

 45 > 29 → min_index = j

 Comp3

7 45 85 29 10 36

Index → 0 1 2 3 4 5

↑
min_index

↑
j

 29 > 10 → min_index = j

 CH 7: Searching and Sorting 7.24

P
as

s
2

 Comp4

7 45 85 29 10 36

Index → 0 1 2 3 4 5

↑
min_index

↑
j

 10 < 36 → min_index unchanged

 45 (a[1]) and 10 (a[min_index]) swapped

7 10 85 29 45 36

Index → 0 1 2 3 4 5

↑
min_index

↑
j

 Second smallest element 10 is placed at its proper position 2 (index = 1)

P
as

s
3

 Comp1

7 10 85 29 45 36

Index → 0 1 2 3 4 5

↑
min_index

↑
j

 85 > 29 → min_index = j

 Comp2

7 10 85 29 45 36

Index → 0 1 2 3 4 5

↑
min_index

↑
j

 29 < 45 → min_index unchanged

 Comp3

7 10 85 29 45 36

Index → 0 1 2 3 4 5

↑
min_index

↑
j

 29 < 36 → min_index unchanged

 29 (a[2]) and 85 (a[min_index]) swapped

7 10 29 85 45 36

Index → 0 1 2 3 4 5

↑
min_index

↑
j

 Third smallest element 29 is placed at its proper position 3 (index = 2)

 CH 7: Searching and Sorting 7.25

P
as

s
4

 Comp1

7 10 29 85 45 36

Index → 0 1 2 3 4 5

↑
min_index

↑
j

 85 > 45 → min_index = j

 Comp2

7 10 29 85 45 36

Index → 0 1 2 3 4 5

↑
min_index

↑
j

 45 > 36 → min_index = j

7 10 29 85 45 36

Index → 0 1 2 3 4 5

↑
min_index

 85 (a[3]) and 36 (a[min_index]) swapped

7 10 29 36 45 85

Index → 0 1 2 3 4 5

↑
min_index

 Fourth smallest element 36 is placed at its proper position 4 (index = 3)

P
as

s
5

 Comp1

7 10 29 36 45 85

Index → 0 1 2 3 4 5

↑
min_index

↑
j

 45 < 85 → min_index unchanged

7 10 29 36 45 85

Index → 0 1 2 3 4 5

↑
min_index

↑
j

Fifth and sixth smallest elements 45 and 85 are placed at its proper position 5
(index = 4) and 6 (index = 5) respectively

Fig.7.4: Step by step execution of selection sort

 CH 7: Searching and Sorting 7.26

Observing the sequences of selection sort in Fig.7.4 we can conclude the following
important points regarding the selection sort.

• There will be always (n – 1) no. of passes in a selection sort for an unsorted list with
n no. of elements. Like bubble sort there is no chance of reduction of no. of passes.

• The variable min_index is taken for holding the minimum element in the list in case
of selection sort.

• Every comparison is done between a pair of elements which may be adjacent or
may not be adjacent. If the element at the lower index is larger than the element at
the higher index, the min_index will be shifted to the index of smaller element.

• There will be (n – 1) no. of comparisons during 1st pass, (n – 2) comparisons during
2nd pass, (n – 3) comparisons during 3rd pass and so on. Therefore 1 comparison
will take place during the (n – 1)th pass in the selection sort.

• After completion of every pass the smallest element in the segment of the array
during that pass will be placed at the 1st position which is the proper position of that
element in the final sorted list.

• Unlike bubble sort there may be only one swapping at the end of every pass. At the
end of every pass the minimum element is pointed by min_index and a swapping
may be done between that minimum element and the first element of that array
segment in case of selection sort.

To implement selection sort we require two nested loops, the outer loop for counting
the number of passes and the inner loop for performing comparisons in a particular
pass. The algorithm of selection sort is given below.

Algorithm of selection sort:

Step 1: Start

Step 2: Input the no. of elements in a variable ‘n’.

Step 3: Input the unsorted list of n no. of elements into an array ‘a’.

Step 4: Set i = 0

Step 5: Repeat Step 6 to Step 12 while i < n – 1

Step 6: Set min_index = i

Step 7: Set j = i + 1

 CH 7: Searching and Sorting 7.27

Step 8: Repeat Step 9 to Step 10 while j < n

Step 9: If a[min_index] > a[j], then
a) Set min_index = j
[End of If (Step 9)]

Step 10: Set j = j + 1
[End of Loop (Step 8)]

Step 11: If min_index ≠ i, then
a) Set temp = a[min_index]
b) Set a[min_index] = a[i]
c) Set a[i] = temp
[End of If (Step 11)]

Step 12: Set i = i + 1
[End of Loop (Step 5)]

Step 13: Stop

C program to arrange a set of numbers in ascending order using selection sort.

#include<stdio.h>
void SelectionSort(int [],int);

int main()
{

int a[50], i = 0, n;

printf("Enter the number of elements: ");
scanf("%d", &n);

printf("Enter the elements of the array:\n");
for(i=0; i<n; i++)
{

printf("Enter Element%d: ", i+1);
scanf("%d", &a[i]);

}

SelectionSort(a, n);

printf("Sorted List Using Selection Sort: ");
for(i=0; i<n; i++)

printf("%d ", a[i]);

printf("\n");
return 0;

}

 CH 7: Searching and Sorting 7.28

void SelectionSort(int arr[],int len)
{

int i, j, min_index, temp;

for(i=0; i<len-1; i++)
{

min_index = i;
for(j=i+1; j<len; j++)

if(arr[min_index] > arr[j])
min_index = j;

if(min_index != i)
{

temp = arr[min_index];
arr[min_index] = arr[i];
arr[i] = temp;

}
}

}

Time complexity of selection sort – To calculate the time complexity of selection
sort we should calculate the number of times comparisons happened to complete the
selection sort in best case and worst case. In this case it is not possible to say in
advance that the list is sorted in ascending order even for a sorted list. That’s why
selection sort always completes (n – 1) no. of passes for a list of n no. elements.

For 1st pass, no. of comparisons = n – 1

For 2nd pass, no. of comparisons = n – 2

For 3rd pass, no. of comparisons = n – 3

In this way no. of comparisons for (n – 1)th pass = 1

.·. Total no. of comparisons = (n – 1) + (n – 2) + (n – 3) + ………… + 1

 = 1 + 2 + 3 + ………….. + (n – 2) + (n – 1)

 =
(n−1)(n−1+1)

2

 =
n(n−1)

2
 =

(n2
−n)
2

Therefore the time complexity of a selection sort becomes O(n2) always. That means,
the time complexity of selection sort is O(n2) for best case, worst case and average
case.

 CH 7: Searching and Sorting 7.29

In-place sorting – Selection sort does not require any extra space. Only it requires an
extra variable (in this case ‘temp’) to swap two elements. That’s why it is an in-place
sorting.

Stability of selection sort – Selection sort is an unstable sorting because sometimes
two equal elements interchange their positions in the sorted list. This situation can be
best understood with the help of the following example.

42 25A 65 12 10 19 25B 20

Index → 0 1 2 3 4 5 6 7

 Unsorted Array with 8 elements

In the above list the two same numbers are 20A and 20B where suffix A and suffix B
shows that the number 20A is placed before 20B.

10 25A 65 12 42 19 25B 20

Index → 0 1 2 3 4 5 6 7

 After completion of Pass 1

10 12 65 25A 42 19 25B 20

Index → 0 1 2 3 4 5 6 7

 After completion of Pass 2

10 12 19 25A 42 65 25B 20

Index → 0 1 2 3 4 5 6 7

 After completion of Pass 3

10 12 19 20 42 65 25B 25A

Index → 0 1 2 3 4 5 6 7

 After completion of Pass 4

10 12 19 20 25B 65 42 25A

Index → 0 1 2 3 4 5 6 7

 After completion of Pass 5

10 12 19 20 25B 25A 42 65

Index → 0 1 2 3 4 5 6 7

 After completion of Pass 6

 CH 7: Searching and Sorting 7.30

10 12 19 20 25B 25A 42 65

Index → 0 1 2 3 4 5 6 7

 After completion of Pass 7 the final sorted list using selection sort

In the final sorted array it is being noticed that 20B is placed before 20A i.e. the
positions of two equal elements have been interchanged after the execution of the
selection sort. This clearly states that the selection sort is an unstable sorting
technique.

Advantages of selection sort:
1. It is easy to understand and implement.
2. It requires constant memory space which makes the space complexity O(1).
3. It requires less number of swapping i.e. less number of memory writes. Therefore

selection may the best choice when memory writes become costly.

Disadvantages of selection sort:
1. Selection sort has time complexity of O(n2) always for best as well as worst case.

This makes the selection sort slower compared to quick sort, merge sort etc.
2. This sorting technique is unstable in nature which may change the relative positions

of the equal elements.

3) Insertion sort – Here initially a sorted list is formed with the first element and
the remaining elements are considered to form an unsorted list. Thus the entire
unsorted list is divided into one sorted list and one unsorted list. Now each and every
element from the unsorted list is inserted into the sorted list in its proper position so
that the sorted list remains sorted in ascending order. After completion of this method
all the elements from the unsorted list occupy their proper position in the sorted list.
As a result we get the entire sorted list by inserting elements from the unsorted list
one by one. As the elements are inserted from the unsorted list into the sorted list, this
process is called insertion sort.

During the first pass the 1st element forms the sorted list and the remaining elements
(2nd element to nth element) form the unsorted list. Now the 2nd element from the
unsorted list is compared with the 1st element in the sorted list. If 1st element is larger
than the 2nd element, then the 2nd element will be placed before the 1st element,
otherwise the position of 2nd element remains unchanged. After the first pass the
sorted list will be expanded to include the 2nd element into its proper position whereas
the unsorted list will be reduced by one element i.e. 2nd element. At the starting of
second pass the third element will be compared with all the elements inside the sorted
list and placed at its proper position. Therefore after the completion of the second
pass the third element will be included into the sorted list and excluded from the
unsorted list, which results the expansion of the sorted list and contraction of the
unsorted list. This process will continue until the unsorted list be exhausted. The
process of insertion sort can be understood clearly with the following example shown
in Fig.7.5.

 CH 7: Searching and Sorting 7.31

P
as

s
1

i = 1 and temp = a[i] = 45
 ← Sorted→
 list ←------------------------ Unsorted list --------------------------→

29 45 85 7 10 36

Index → 0 1 2 3 4 5

↑
j

↑
i

 Comp1: a[j] = 29 < temp → a[j+1] = temp = 45
 ←----- Sorted list -----→←------------------- Unsorted list ------------------→

29 45 85 7 10 36

Index → 0 1 2 3 4 5

P
as

s
2

i = 2 and temp = a[i] = 85
 ←----- Sorted list -----→←------------------- Unsorted list ------------------→

29 45 85 7 10 36

Index → 0 1 2 3 4 5

↑
j

↑
i

 Comp1: a[j] = 45 < temp → a[j+1] = temp = 85
 ←------------- Sorted list -----------→←--------- Unsorted list --------------→

29 45 85 7 10 36

Index → 0 1 2 3 4 5

P
as

s
3

i = 3 and temp = a[i] = 7
 ←------------- Sorted list ------------→←--------- Unsorted list --------------→

29 45 85 7 10 36

Index → 0 1 2 3 4 5

↑
j

↑
i

 Comp1: a[j] = 85 > temp → 85 will shift one position right

29 45 85 10 36

Index → 0 1 2 3 4 5

↑
j

↑
i

 Comp2: a[j] = 45 > temp → 45 will shift one position right

29 45 85 10 36

Index → 0 1 2 3 4 5

↑
j

↑
i

 Comp3: a[j] = 29 > temp → 29 will shift one position right

 CH 7: Searching and Sorting 7.32

P
as

s
3

29 45 85 10 36

Index → 0 1 2 3 4 5

j = -1
↑
i

 j < 0 → a[j+1] = temp = 7

 ←--------------------- Sorted list ------------------→←--- Unsorted list -----→

7 29 45 85 10 36

Index → 0 1 2 3 4 5

P
as

s
4

i = 4 and temp = a[i] = 10
 ←--------------------- Sorted list ------------------→←--- Unsorted list -----→

7 29 45 85 10 36

Index → 0 1 2 3 4 5

↑
j

↑
i

 Comp1: a[j] = 85 > temp → 85 will shift one position right

7 29 45 85 36

Index → 0 1 2 3 4 5

↑
j

↑
i

 Comp2: a[j] = 45 > temp → 45 will shift one position right

7 29 45 85 36

Index → 0 1 2 3 4 5

↑
j

↑
i

 Comp3: a[j] = 29 > temp → 29 will shift one position right

7 29 45 85 36

Index → 0 1 2 3 4 5

↑
j

↑
i

 Comp4: a[j] = 7 < temp → a[j+1] = temp = 10
 Unsorted list
 ←--------------------------- Sorted list ----------------------------→←---------→

7 10 29 45 85 36

Index → 0 1 2 3 4 5

 CH 7: Searching and Sorting 7.33

P
as

s
5

i = 5 and temp = a[i] = 36
 Unsorted list
 ←--------------------------- Sorted list ----------------------------→←---------→

7 10 29 45 85 36

Index → 0 1 2 3 4 5

↑
j

↑
i

 Comp1: a[j] = 85 > temp → 85 will shift one position right

7 10 29 45 85

Index → 0 1 2 3 4 5

↑
j

↑
i

 Comp2: a[j] = 45 > temp → 45 will shift one position right

7 10 29 45 85

Index → 0 1 2 3 4 5

↑
j

↑
i

 Comp3: a[j] = 29 < temp → a[j+1] = temp = 36

 ←------------------------------------ Sorted list ----------------------------------→

7 10 29 36 45 85

Index → 0 1 2 3 4 5

Fig.7.5: Step by step execution of insertion sort

Some observations regarding the insertion sort are given below.

• In insertion sort the entire list is divided into two lists, one sorted list and another
unsorted list where sorted list starts with one element and the unsorted list starts
with (n – 1) no. of elements. After completion of each pass the length of sorted list
is incremented by one and the length of the unsorted list is decremented by one.
Finally at the end of the insertion sort the length of the sorted list becomes n which
gives the entire sorted list.

• There will be always (n – 1) no. of passes in insertion sort for an unsorted list with n
no. of elements.

• During the execution of every pass first element from the unsorted list is inserted
into the sorted list to a proper place. That’s why this sorting is called insertion sort.

 CH 7: Searching and Sorting 7.34

• There will be maximum 1 no. of comparison during 1st pass, maximum 2 no. of
comparisons during 2nd pass, maximum 3 no. of comparisons during 3rd pass and so
on. Therefore (n – 1) no. of comparisons will take place during the (n – 1) th pass in
the insertion sort.

To implement insertion sort we require two nested loops, the outer loop for counting
the number of passes and the inner loop for performing comparisons between the
elements of the sorted list and the first or left-most element of the unsorted list. The
algorithm of insertion sort is given below.

Algorithm of insertion sort:

Step 1: Start

Step 2: Input the no. of elements in a variable ‘n’.

Step 3: Input the unsorted list of n no. of elements into an array ‘a’.

Step 4: Set i = 1

Step 5: Repeat Step 6 to Step 12 while i < n

Step 6: Set temp = a[i]

Step 7: Set j = i – 1

Step 8: Repeat Step 9 to Step 10 while j ≥ 0 and a[j] > temp

Step 9: Set a[j + 1] = a[j]

Step 10: Set j = j – 1
[End of Loop (Step 8)]

Step 11: Set a[j + 1] = temp

Step 12: Set i = i + 1
[End of Loop (Step 5)]

Step 13: Stop

 CH 7: Searching and Sorting 7.35

C program to arrange a set of numbers in ascending order using insertion sort.

#include<stdio.h>
void InsertionSort(int [],int);

int main()
{

int a[50], i = 0, length;

printf("Enter the number of elements: ");
scanf("%d", &length);

printf("Enter the elements of the array:\n");
for(i=0; i<length; i++)
{

printf("Enter Element%d: ", i+1);
scanf("%d", &a[i]);

}

InsertionSort(a, length);

printf("Sorted List Using Insertion Sort: ");
for(i=0; i<length; i++)

printf("%d ", a[i]);

printf("\n");
return 0;

}

void InsertionSort(int arr[],int len)
{

int i, j, temp;

for(i=1; i<len; i++)
{

temp = arr[i];
j = i - 1;

while(j>=0 && arr[j] > temp)
{

arr[j+1] = arr[j];
j--;

}
arr[j+1] = temp;

}
}

 CH 7: Searching and Sorting 7.36

Time complexity of insertion sort – To calculate the time complexity of insertion
sort we have to consider the number of times comparisons happened to complete the
insertion sort in best case and worst case.

Best case: When the list of elements are already sorted in ascending order, the
insertion sort performs minimum number of comparisons to complete the sorting,
which causes minimum execution time. In this condition there will be one comparison
in every pass. As a result there will be (n – 1) no. of comparisons for (n – 1) no. of
passes. Therefore the time complexity of the insertion sort becomes O(n) for best
case.

Worst case: Worst case will happen when the unsorted list is in descending order and
the list will have to be sorted in ascending order using insertion sort. In this situation
we get the following results.

For 1st pass, no. of comparisons = 1

For 2nd pass, no. of comparisons = 2

For 3rd pass, no. of comparisons = 3

In this way no. of comparisons for (n – 1)th pass = n – 1

.·. Total no. of comparisons = 1 + 2 + 3 + ………….. + (n – 2) + (n – 1)

 =
(n−1)(n−1+1)

2

 =
n(n−1)

2
 =

(n2
−n)
2

Therefore the time complexity of insertion sort becomes O(n2) for worst case.

Average case: The time complexity of insertion sort in average case is O(n2).

In-place sorting – Insertion sort does not require any extra space. That’s why it is an
in-place sorting.

Stability of insertion sort – Insertion sort is a stable sorting technique.

Advantages of insertion sort:
1. It is easy to understand and implement.
2. It requires constant memory space which makes the space complexity O(1). That’s

why it is an in-place sorting.
3. It is a stable sorting algorithm.

 CH 7: Searching and Sorting 7.37

Disadvantages of insertion sort:
1. It is not efficient for large data set.
2. It is not so efficient like merge sort, quick sort etc., because the time complexity of

insertion sort for worst case is larger than that of the sorting techniques.

4) Quick sort – Quick sort algorithm was first developed by C. A. R. Hoare. It is a
sorting algorithm based on Divide and Conquer strategy that picks up an element as a
pivot or key element, place that pivot element in its proper position in the list and
partitions the list into two parts with respect to the pivot element in such a way that all
the elements in the left partition will be less or equal to the pivot element and all the
elements in the right partition will be greater than the pivot element. Therefore after
the completion of 1st pass we have two partitions (one left and other right partition) on
the both sides of the pivot element. During the 2nd pass one element from the left
partition will be selected as pivot element and other element from the right partition
will be chosen as pivot element. Again the left partition as well as the right partition
will be divided into two partitions with respect to the selected pivot elements when
they are placed at their proper positions in the left and the right partition respectively.
This process will continue until all partitions hold only a single element. Hence it can
be observed that the list are being partitioned consecutively after the completion of
every pass. Due to this reason quick sort is also known as partition exchange sort. The
process of determining the proper place of the pivot element is given below in details.

1. Although any element may be selected as pivot element in case of quick sort, but
here the 1st element in the list is selected as the pivot element.

2. Two variables ‘start’ and ‘end’ are taken initially to point the starting index and the
last index of the array ‘a’.

3. The pivot element is compared consecutively with other elements of the array one
by one from left to right. If a[start] ≤ pivot, then the variable ‘start’ is incremented
by one to point the next element, otherwise start is kept unchanged. Similarly the
pivot element is also compared with the other elements in the array from right to
left. If a[end] > pivot, then the variable ‘end’ is decremented by one each time to
point the previous element, otherwise end remains unchanged.

4. When a[start] > pivot and a[end] ≤ pivot, the start and the end index remain
unchanged somewhere in the list. Now the element pointed by start and the element
pointed by end will be interchanged. Again the same procedure is continued until
end becomes smaller than start.

5. When end becomes less than start, the process of comparisons is stopped and
finally the proper position of the pivot element pointed by the end index is
determined.

6. Therefore the pivot element and the element pointed by the variable end are
swapped to achieve the correct position of the pivot element.

7. Now the list is partitioned into two parts with respect to the pivot element and the
above mentioned same procedure is carried out to find out the proper place of
another pivot element.

The above mentioned procedure of quick sort is demonstrated with the help of the
following example in detail.

 CH 7: Searching and Sorting 7.38

P
as

s
1

A
rr

ay
 a

pivot = a[0] = 10 Lower Bound lb = 0 Upper Bound ub = 6

10 15 1 2 9 10 11

Index → 0 1 2 3 4 5 6

↑
start

↑
end

 a[start] = pivot → start = start + 1

10 15 1 2 9 10 11

Index → 0 1 2 3 4 5 6

↑
start

↑
end

 a[start] > pivot → start will be unchanged

10 15 1 2 9 10 11

Index → 0 1 2 3 4 5 6

↑
start

↑
end

 a[end] > pivot → end = end – 1

10 15 1 2 9 10 11

Index → 0 1 2 3 4 5 6

↑
start

↑
end

 a[end] = pivot → end will be unchanged

10 10 1 2 9 15 11

Index → 0 1 2 3 4 5 6

↑
start

↑
end

 As start < end, a[start] and a[end] are swapped

10 10 1 2 9 15 11

Index → 0 1 2 3 4 5 6

↑
start

↑
end

 a[start] = pivot → start = start + 1

 CH 7: Searching and Sorting 7.39

P
as

s
1

A
rr

ay
 a

10 10 1 2 9 15 11

Index → 0 1 2 3 4 5 6

↑
start

↑
end

 a[start] < pivot → start = start + 1

10 10 1 2 9 15 11

Index → 0 1 2 3 4 5 6

↑
start

↑
end

 a[start] < pivot → start = start + 1

10 10 1 2 9 15 11

Index → 0 1 2 3 4 5 6

↑
start

↑
end

 a[start] < pivot → start = start + 1

10 10 1 2 9 15 11

Index → 0 1 2 3 4 5 6

↑ ↑
start end

 a[start] > pivot → start will be unchanged

10 10 1 2 9 15 11

Index → 0 1 2 3 4 5 6

↑ ↑
start end

 a[end] > pivot → end = end - 1

10 10 1 2 9 15 11

Index → 0 1 2 3 4 5 6

↑
end

↑
start

 a[end] < pivot → end will be unchanged

As start ≮ end, a[start] and a[end] will not be swapped.
a[0] and a[end] will be swapped to place the pivot at its correct position.

 CH 7: Searching and Sorting 7.40

P
as

s
1

A
rr

ay
 a

 ←------------------ Left sub-array aL ----------------→ ←- Right sub-array aR →

9 10 1 2 10 15 11

Index → 0 1 2 3 4 5 6

↑
pivot

 Pivot 10 has been placed at its correct index 4

P
as

s
2

L
ef

t
su

b-
ar

ra
y

a L

pivot = a[0] = 9 Lower Bound lb = 0 Upper Bound ub = 3

 ←------------------ Left sub-array aL ----------------→ ←- Right sub-array aR →

9 10 1 2 10 15 11

Index → 0 1 2 3 4 5 6

↑
start

↑
end

 a[start] < pivot → start = start + 1

 ←------------------ Left sub-array aL ----------------→ ←- Right sub-array aR →

9 10 1 2 10 15 11

Index → 0 1 2 3 4 5 6

↑
start

↑
end

 a[start] > pivot → start will be unchanged

 ←------------------ Left sub-array aL ----------------→ ←- Right sub-array aR →

9 10 1 2 10 15 11

Index → 0 1 2 3 4 5 6

↑
start

↑
end

 a[end] < pivot → end will be unchanged

 ←------------------ Left sub-array aL ----------------→ ←- Right sub-array aR →

9 2 1 10 10 15 11

Index → 0 1 2 3 4 5 6

↑
start

↑
end

 As start < end, a[start] and a[end] are swapped

 ←------------------ Left sub-array aL ----------------→ ←- Right sub-array aR →

9 2 1 10 10 15 11

Index → 0 1 2 3 4 5 6

↑
start

↑
end

 a[start] < pivot → start = start + 1

 CH 7: Searching and Sorting 7.41

P
as

s
2

L
ef

t
su

b-
ar

ra
y

a L
 ←------------------ Left sub-array aL ----------------→ ←- Right sub-array aR →

9 2 1 10 10 15 11

Index → 0 1 2 3 4 5 6

↑
start

↑
end

 a[start] < pivot → start = start + 1

 ←------------------ Left sub-array aL ----------------→ ←- Right sub-array aR →

9 2 1 10 10 15 11

Index → 0 1 2 3 4 5 6

↑ ↑
start end

 a[start] > pivot → start will be unchanged

 ←------------------ Left sub-array aL ----------------→ ←- Right sub-array aR →

9 2 1 10 10 15 11

Index → 0 1 2 3 4 5 6

↑ ↑
start end

 a[end] > pivot → end = end – 1

 ←------------------ Left sub-array aL ----------------→ ←- Right sub-array aR →

9 2 1 10 10 15 11

Index → 0 1 2 3 4 5 6

↑
end

↑
start

 a[end] < pivot → end will be unchanged

As start ≮ end, a[start] and a[end] will not be swapped.
a[0] and a[end] will be swapped to place the pivot at its correct position.

 ←------------------ Left sub-array aL ----------------→ ←- Right sub-array aR →

1 2 9 10 10 15 11

Index → 0 1 2 3 4 5 6

↑
pivot

 Pivot 9 has been placed at its correct index 2

R
ig

ht
 s

u
b

ar
ra

y
a R pivot = a[5] = 15 Lower Bound lb = 5 Upper Bound ub = 6

 ←------------------ Left sub-array aL ----------------→ ←- Right sub-array aR →

1 2 9 10 10 15 11

Index → 0 1 2 3 4 5 6

↑
start

↑
end

 a[start] = pivot → start = start + 1

 CH 7: Searching and Sorting 7.42

P
as

s
2

R
ig

ht
 s

u
b

ar
ra

y
a R

 ←------------------ Left sub-array aL ----------------→ ←- Right sub-array aR →

1 2 9 10 10 15 11

Index → 0 1 2 3 4 5 6

↑ ↑
start end

 a[start] < pivot → start = start + 1

 ←------------------ Left sub-array aL ----------------→ ← Right sub-array aR →

1 2 9 10 10 15 11

Index
→

0 1 2 3 4 5 6 7

↑
end

↑
start

 start > 6 → start = 7 (unchanged)

 ←------------------ Left sub-array aL ----------------→ ← Right sub-array aR →

1 2 9 10 10 15 11

Index
→

0 1 2 3 4 5 6 7

↑
end

↑
start

 a[end] < pivot → end will be unchanged

As start ≮ end, a[start] and a[end] will not be swapped.
a[5] and a[end] will be swapped to place the pivot at its correct position.

 ←------------------ Left sub-array aL ----------------→ ←- Right sub-array aR →

1 2 9 10 10 11 15

Index → 0 1 2 3 4 5 6

↑
pivot

 Pivot 15 has been placed at its correct index 6

P
as

s
3

L
ef

t
su

b-
ar

ra
y

a L
L

pivot = a[0] = 1 Lower Bound lb = 0 Upper Bound ub = 1

 Left sub-array aLL Right sub-array aLR

 of array aL of array aL

 ←------------------ ------→ ←---------→

1 2 9 10 10 11 15

Index → 0 1 2 3 4 5 6

↑
start

↑
end

 a[start] = pivot → start = start + 1

 CH 7: Searching and Sorting 7.43

P
as

s
3

L
ef

t
su

b-
ar

ra
y

a L
L

 Left sub-array aLL Right sub-array aLR

 of array aL of array aL

 ←------------------ ------→ ←---------→

1 2 9 10 10 11 15

Index → 0 1 2 3 4 5 6

↑ ↑
start end

 a[start] > pivot → start will be unchanged

 Left sub-array aLL Right sub-array aLR

 of array aL of array aL

 ←------------------ ------→ ←---------→

1 2 9 10 10 11 15

Index → 0 1 2 3 4 5 6

↑ ↑
start end

 a[end] > pivot → end = end – 1

 Left sub-array aLL Right sub-array aLR

 of array aL of array aL

 ←------------------ ------→ ←---------→

1 2 9 10 10 11 15

Index → 0 1 2 3 4 5 6

↑
end

↑
start

 a[end] = pivot → end will be unchanged

As start ≮ end, a[start] and a[end] will not be swapped.
a[0] and a[end] will be swapped to place the pivot at its correct position.

 Left sub-array aLL Right sub-array aLR

 of array aL of array aL

 ←------------------ ------→ ←---------→

1 2 9 10 10 11 15

Index → 0 1 2 3 4 5 6

↑
pivot

 Pivot 1 has been placed at its correct index 0

R
ig

ht
 s

u
b

-a
rr

ay
 a

L
R pivot = a[3] = 10 Lower Bound lb = 3 Upper Bound ub = 3

 Left sub-array aLL Right sub-array aLR

 of array aL of array aL

 ←------------------ ------→ ←---------→

1 2 9 10 10 11 15

Index → 0 1 2 3 4 5 6

↑ ↑
start end

 As lb ≮ ub, start and end will be unchanged

 CH 7: Searching and Sorting 7.44

P
as

s
3

R
ig

ht
 s

u
b

-a
rr

ay
 a

L
R Left sub-array aLL Right sub-array aLR

 of array aL of array aL

 ←------------------ ------→ ←---------→

1 2 9 10 10 11 15

Index → 0 1 2 3 4 5 6

↑
pivot

 pivot 10 has been placed at its correct index 3

L
ef

t
su

b-
ar

ra
y

a R
L

pivot = a[5] = 11 Lower Bound lb = 5 Upper Bound ub = 5
 Left sub-array aRL

 of array aR

 ←---------→

1 2 9 10 10 11 15

Index → 0 1 2 3 4 5 6

↑ ↑
start end

 As lb ≮ ub, start and end will be unchanged
 Left sub-array aRL

 of array aR

 ←---------→

1 2 9 10 10 11 15

Index → 0 1 2 3 4 5 6

↑
pivot

 pivot 11 has been placed at its correct index 5

P
as

s
4

R
ig

ht
 s

u
b

-a
rr

ay
 a

L
L

R

pivot = a[1] = 2 Lower Bound lb = 1 Upper Bound ub = 1
 Right sub-array aLLR

 of array aLL

 ←---------→

1 2 9 10 10 11 15

Index → 0 1 2 3 4 5 6

↑ ↑
start end

↑
pivot

 As lb ≮ ub, start and end will be unchanged
 Right sub-array aLLR

 of array aLL

 ←---------→

1 2 9 10 10 11 15

Index → 0 1 2 3 4 5 6

↑
pivot

↑
pivot

 Final sorted list after four passes using quick sort
 pivot 2 has been placed at its correct index 1

Fig.7.6: Step by step execution of quick sort

 CH 7: Searching and Sorting 7.45

The above explained is shown again in brief only by giving the passes.

Initially: 10 15 1 2 9 10 11

Index → 0 1 2 3 4 5 6

After Pass 1: 9 10 1 2 10 15 11

Index → 0 1 2 3 4 5 6

After Pass 2: 1 2 9 10 10 11 15

Index → 0 1 2 3 4 5 6

After Pass 3: 1 2 9 10 10 11 15

Index → 0 1 2 3 4 5 6

After Pass 4: 1 2 9 10 10 11 15

Index → 0 1 2 3 4 5 6

Final sorted list after four passes using quick sort

Some observations regarding the quick sort are given below.

• In quick sort the first or last or any other element is selected as pivot element.

• After the completion of 1st pass the pivot element is placed at its correct position.
The entire list is divided into two partitions with respect to the pivot element – one
left partition and other right partition. During the 2nd pass the left and right partition
are again sub-divided into four partitions after positioning the pivot elements into
the proper places in the left and right partition. Hence it is evident that the pivot
element is placed at its proper position after each pass.

• This partitioning is continued until all the partitions have single element. When this
happens, the list becomes a sorted list.

Quick sort is a recursive process where a function is called to give the correct location
of the pivot element after the completion of each pass. Now the quick sort function
calls itself two times recursively – first function call for left partition and the second
function call for right partition. The function call for left partition continues the same
procedure of quick sort to determine the correct position of the pivot element from the
left partition and divides it into another two partitions. Similarly the function call for
the right partition does the same thing for right partition. The algorithm of quick sort
is given below.

 CH 7: Searching and Sorting 7.46

Algorithm of Quick Sort:
a → Array
lb → Lower bound
ub → Upper bound
loc → Correct location of the pivot element

QuickSort(a, lb, ub)
Step 1: Start

Step 2: If lb < ub, then
a) Set loc = Call Partition(a, lb, ub)
b) Call QuickSort(a, lb, loc – 1)
c) Call QuickSort(a, loc + 1, ub)
[End of If (Step 2)]

Step 3: Stop

Partition(a, lb, ub)
Step 1: Start

Step 2: Set start = lb

Step 3: Set end = ub

Step 4: Set pivot = a[lb]

Step 5: Repeat Step 6 to Step 11 while start ≤ end

Step 6: Repeat Step 7 while a[start] ≤ pivot and start <= ub

Step 7: Set start = start + 1
[End of Loop (Step 6)]

Step 8: Repeat Step 9 while a[end] > pivot and end ≥ lb

Step 9: Set end = end – 1
[End of Loop (Step 8)]

Step 10: If start < end, then

Step 11: Swap a[start] with a[end]
 [End of If (Step 10)]
 [End of Loop (Step 5)]

Step 12: Swap a[lb] with a[end]

Step 13: Return end

 CH 7: Searching and Sorting 7.47

C program to arrange a set of numbers in ascending order using quick sort.

#include<stdio.h>

void QuickSort(int [],int ,int);
int Partition(int [],int ,int);
void Swap(int *,int *);

int main()
{

int a[10], i = 0, length;

printf("Enter the number of elements: ");
scanf("%d", &length);

printf("Enter the elements of the array:\n");
for(i=0; i<length; i++)
{

printf("Enter Element%d: ", i+1);
scanf("%d", &a[i]);

}

printf("\nUnsorted List: ");

for(i=0; i<length; i++)
printf("%d ", a[i]);

QuickSort(a, 0, length-1);

printf("\n\nSorted List Using Quick Sort: ");

for(i=0; i<length; i++)
printf("%d ", a[i]);

printf("\n");
return 0;

}

void QuickSort(int a[],int lb,int ub)
{

int loc;
if(lb < ub)
{

loc = Partition(a, lb, ub);
QuickSort(a, lb, loc-1);
QuickSort(a, loc+1, ub);

}
}

 CH 7: Searching and Sorting 7.48

int Partition(int a[], int lb,int ub)
{

int start = lb, end = ub;
int pivot = a[start];

while(start <= end)
{

while(a[start] <= pivot && start <= ub)
start++;

while(a[end] > pivot && end >= lb)
end--;

if(start < end)
Swap(&a[start], &a[end]);

}

Swap(&a[lb], &a[end]);
return end;

}

void Swap(int *p,int *q)
{

int temp;

temp = *p;
*p = *q;
*q = temp;

}

Time complexity of quick sort – To calculate the time complexity of quick sort we
have to determine the number of times comparisons happened to complete the quick
sort in best case and worst case.

Best Case: Best situation for quick sort happens when it take minimum time to
execute i.e. when it accomplishes minimum number of comparisons. This will happen
when the entire list/ partitions are sub-divided equally into two parts. It means that
every time the pivot element will be placed at the middle of the list after completion
of every pass and it will create two partitions with same number of elements with
respect to the pivot element. The following example will clarify this situation with a
list of 7 elements 10, 15, 1, 2, 9, 16, 13.

 CH 7: Searching and Sorting 7.49

 ←------------------------------------- n = 7 --→

Initially: 10 15 1 2 9 16 13 Level1

Index → 0 1 2 3 4 5 6

 ←------------ n/2 = 3 ------------→ ←-------- n/2 = 3 ------------→

After Pass 1: 2 9 1 10 15 16 13 Level2

Index → 0 1 2 3 4 5 6

 ←n/4=1→ ←n/4=1→ ←n/4=1→ ←n/4 =1→

After Pass 2: 1 2 9 10 13 15 16 Level3

Index → 0 1 2 3 4 5 6

After Pass 3: 1 2 9 10 10 11 15

Index → 0 1 2 3 4 5 6

From the above example it is clear that at 2nd level the number of elements will be
almost n/2 in every partition where n is the number of elements in the original array.
Similarly there will be n/4 and n/8 elements approximately in each partition at 3rd and
4th level respectively. In this way the number of elements will be divided by 2 for
successive levels until the number of elements reaches to one element.

Suppose it requires k number of levels to get one element in each partition using
quick sort for a list of n number of elements.

At Level 1: No. of elements = n = n / 20

At Level 2: No. of elements = n/2 = n / 21

At Level 3: No. of elements = n/2 = n / 22

 .

 .

 .
At Level k: No. of elements = n / 2k – 1 = 1

 or, 2k – 1 = n

 .·. k = log2 n + 1

Now it takes almost n comparisons for every level in quick sort. Therefore for k
number of levels the quick sort requires n (log2 n + 1) comparisons. It constitutes the
time complexity of quick sort to be O(n log2 n).

 CH 7: Searching and Sorting 7.50

Recurrence Method: The best case time complexity of quick sort may be determined
using recurrence relation also. To establish the recurrence relation of the quick sort we
have to recall the function of quick sort which is given below for understanding.

void QuickSort(int a[],int lb,int ub) --------- Time take by the QuickSort function for n
number of elements: T(n)

{
int loc;
if(lb < ub)
{

loc = Partition(a, lb, ub); -----Time taken by the Partition function to
complete n comparisons to place the
pivot element at proper position: n units

QuickSort(a, lb, loc-1); ------ Time taken by the function for left
partition of n/2 elements: T(n/2)

QuickSort(a, loc+1, ub); ---- Time taken by the function for right
partition of n/2 elements: T(n/2)

}
}

If the time taken by the quick sort for n elements is T(n), the recurrence relation is
given by

 T(n) = n + T(n/2) + T(n/2)

or, T(n) = 2 T(n/2) + n

 or, T(n) = 2 [2 T(n/4) + n/2] + n [·.· T(n/2) = 2 T(n/4) + n/2]

or, T(n) = 22 T(n / 22) + 2n

or, T(n) = 22 [2 T(n/8) + n/4] + 2n [·.· T(n/4) = 2 T(n/8) + n/4]

or, T(n) = 23 T(n / 23) + 3n

or, T(n) = 2k T(n / 2k) + kn -- (1)
Where k is the number of levels to get
one element in each partition using quick
sort

.·. n / 2k = 1

or, 2k = n

.·. k = log2 n

Now putting k = log2 n into equation (1) we get,

T(n) = n T(1) + n log2 n

 CH 7: Searching and Sorting 7.51

For one element in the list there will be 1 comparison for quick sort which takes 1 unit
of time i.e. T(1) = 1.

.·. T(n) = n . 1 + n log2 n = n (log2 n + 1)

Therefore the time complexity of quick sort in best case is O(n log2 n).

Worst Case: Worst case for quick sort happens when the entire list of elements is
already sorted i.e. the elements are either in ascending order or descending order.
Let’s take an example where all the elements are in ascending order.
 ←-------------------------n no. of comparisons ----------------------------------→

Initially: 10 20 30 40 50 60 70 Level1

Index → 0 1 2 3 4 5 6

 ←---------(n-1) no. of comparisons for right partition ----------→

After Pass 1: 10 20 30 40 50 60 70 Level2

Index → 0 1 2 3 4 5 6

 ←---(n-2) no. of comparisons for right partition ----→

After Pass 2: 10 20 30 40 50 60 70 Level3

Index → 0 1 2 3 4 5 6

 ←-------(n-3) no. of comparisons -------→
 for right partition

After Pass 3: 10 20 30 40 50 60 70 Level4

Index → 0 1 2 3 4 5 6

 ←-(n-4) no. of comparisons --→
 for right partition

After Pass 4: 10 20 30 40 50 60 70 Level5

Index → 0 1 2 3 4 5 6

 ←----(n-5) no. -----→
 of comparisons
 for right partition

After Pass 5: 10 20 30 40 50 60 70 Level6

Index → 0 1 2 3 4 5 6

 ←(n-6) no.→
 of comparisons
 for right partition

After Pass 6: 10 20 30 40 50 60 70 Level7

Index → 0 1 2 3 4 5 6

After Pass 7: 10 20 30 40 50 60 70

Index → 0 1 2 3 4 5 6

 CH 7: Searching and Sorting 7.52

From the above example we can observe that after completion of every pass only one
partition (right partition) is generated because each time the selected pivot elements
are already placed at their correct position. As there is no left partition no comparisons
are done from the left partition and all the comparisons result from only right
partitions. As a result we can write,

Total no. of comparisons = n + (n – 1) + (n – 2) + (n – 3) + ………….. + 2 + 1

 = 1 + 2 + 3 + ………………. upto n no. of terms

 =
n(n+1)

2
= n2

+n
2

Therefore the time complexity of quick sort in worst case is O(n2).

Recurrence Method: Like the recurrence method in the best case the recurrence
relation is to be formulated here also. In this case we have already seen that no left
partition is created with respect to the pivot element. Due to this reason the first
function call for left partition is not executed, only the second function call for right
partition is executed.

void QuickSort(int a[],int lb,int ub) --------- Time take by the QuickSort function for n
number of elements: T(n)

{
int loc;
if(lb < ub)
{

loc = Partition(a, lb, ub); -----Time taken by the Partition function to
complete n comparisons to place the
pivot element at proper position: n units

QuickSort(a, lb, loc-1); ------ Time taken by the function for left
partition: 0 since left partition is not
created

QuickSort(a, loc+1, ub); ---- Time taken by the function for right
partition of (n - 1) elements: T(n – 1)

}
}

If the time taken by the quick sort for n elements is T(n), the recurrence relation is
given by

 T(n) = n + 0 + T(n – 1)

or, T(n) = T(n – 1) + n

or, T(n) = T(n – 2) + (n – 1) + n [·.· T(n – 1) = T(n – 2) + (n – 1)]

or, T(n) = T(n – 3) + (n – 2) + (n – 1) + n [·.· T(n – 2) = T(n – 3) + (n – 2)]

 CH 7: Searching and Sorting 7.53

or, T(n) = T(n – k) + {n – (k - 1)} + {n – (k - 2)} + … + (n – 2) + (n – 1) + n

Now putting k = n – 1 we get,

T(n) = T(n – n + 1) + {n – (n – 1 – 1)} + {n – (n – 1 – 2)} + .. + (n – 1) + n

or T(n) = T(1) + 2 + 3 + ………. + (n – 1) + n

For one element in the list there will be 1 comparison for quick sort which makes.
T(1) = 1.

.·. T(n) = 1 + 2 + 3 + ………. + (n – 1) + n =
n(n+1)

2
= n2

+n
2

Therefore the time complexity of quick sort in worst case is O(n2).

Average case: The time complexity of quick sort in average case is O(n log2 n).

In-place sorting – Quick sort does not take any extra space. That’s why it is an in-
place sorting.

Stability of quick sort – Quick sort is an unstable sorting technique because it may
interchange the positions of duplicate elements after sorting. That means, the element
which comes before the duplicate element in original list may be placed after the
duplicate element in the sorted list. This situation may be described with the help of
the following example.

Initially: 10A 15 1 2 9 10B 11

Index → 0 1 2 3 4 5 6

After Pass 1: 9 10B 1 2 10A 15 11

Index → 0 1 2 3 4 5 6

After Pass 2: 1 2 9 10B 10A 11 15

Index → 0 1 2 3 4 5 6

After Pass 3: 1 2 9 10B 10A 11 15

Index → 0 1 2 3 4 5 6

After Pass 4: 1 2 9 10B 10A 11 15

Index → 0 1 2 3 4 5 6

Final sorted list after four passes using quick sort

It can be clearly observed in the above example that 10A which is placed before 10B in
the original unsorted list is positioned after 10B in the sorted list. This consequence
shows that quick sort is unstable.

 CH 7: Searching and Sorting 7.54

Advantages of quick sort:
1. Quick sort is faster than other algorithms like bubble sort, selection sort and

insertion sort.
2. It is efficient for large data sets, but can be used for small or medium data set also.
3. It requires constant memory space which makes the space complexity O(1). That’s

why it is an in-place sorting.

Disadvantages of quick sort:
1. The process of quick sort is complex and massively recursive in nature.
2. It has the worst time complexity of O(n2) when the list is already sorted.
3. It is not a stable sort.

5) Merge sort – Merge sort is a sorting algorithm which uses divide, conquer and
combine strategy. It is first invented by John Von Neumann in the year 1945.

Divide: In this stage the aim is to divide the entire list into some sub-lists in such a
way that every sub-list becomes sorted. Any sub-list can be said to be sorted if and
only if the sub-list will hold one element. Due to this reason merge sort divides the list
successively into sub-lists of one element. At first merge sort follows the divide
strategy where the entire list of n elements is divided into two sub-lists of n/2
elements. Again each sub-list of n/2 elements will be divided into another two sub-
lists of n/4 elements. This process will continue until all the sub-lists hold one
element. To divide the array into two sub-array the minimum index and the maximum
index of the array is pointed by lb (lower bound) and ub (upper bound) respectively
and the middle index is determined by averaging lb and ub i.e. (lb + ub) / 2. Now the
left partition is constructed using the sub-array starting from lb to mid and the right
partition is formed by another sub-array starting from (mid + 1) to ub.

Conquer: Each sub-array is sorted individually using the merge sort algorithm.

Combine/ Merge: At this last stage the two sorted sub-lists are combined/ merged in
such a way that the resultant merged list becomes sorted once again. As this technique
requires two sorted sub-arrays, this process must be started using two sub-lists of one
element. Because we know any list with single element can be considered as sorted
always. After the completion of this merge process we shall get the entire list of n
number of elements in sorted form. To achieve this sorted array another array of size n
will be utilized. The use of an extra array makes the merge sort to be non-in-place
sorting. Two elements – one from left sub-array and other from right sub-array are
compared to each other. The element which is smaller will be placed into the extra
array. Thus the extra array is filled with the elements from left partition and right
partition in a sorted manner. Finally the sorted elements in the extra array are restored
into the original array.

The step by step procedure of quick sort is shown below in Fig.7.7.

 CH 7: Searching and Sorting 7.55

 ←--------------------------------- n = 8 ---------------------------------→

Initially: 39 9 81 45 90 27 72 18 Level1

Index → 0 1 2 3 4 5 6 7

↑
lb

↑
mid

↑
mid+1

↑
ub

 ↓ ↓
 ←--------------- n/2 --------------→ ←------------- n/2 ----------------→

39 9 81 45 90 27 72 18 Level2

Index → 0 1 2 3 4 5 6 7

↑
lb

↑
mid

↑
mid+1

↑
ub

↑
lb

↑
mid

↑
mid+1

↑
ub

 ↓ ↓ ↓ ↓
 ←------ n/4 ------→ ←----- n/4 -----→ ←---- n/4 ----→ ←----- n/4 -----→

39 9 81 45 90 27 72 18 Level3

Index → 0 1 2 3 4 5 6 7

↑
lb

mid

↑
ub

mid+1

↑
lb

mid

↑
ub

mid+1

↑
lb

mid

↑
ub

mid+1

↑
lb

mid

↑
ub

mid+1

 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
 ← n/8→ ← n/8→ ←n/8→ ← n/8→ ← n/8→ ← n/8→ ←n/8→ ← n/8→

39 9 81 45 90 27 72 18 Level4

Index → 0 1 2 3 4 5 6 7

F ig.7.7(a): Divide and conquer of the array using merge sort
 ← n/8→ ← n/8→ ←n/8→ ← n/8→ ← n/8→ ← n/8→ ←n/8→ ← n/8→

39 9 81 45 90 27 72 18 Level4

Index → 0 1 2 3 4 5 6 7

 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
 ←------ n/4 ------→ ←----- n/4 -----→ ←----- n/4 ------→ ←------ n/4 ------→

9 39 45 81 27 90 18 72 Level3

Index → 0 1 2 3 4 5 6 7

 ↓ ↓ ↓ ↓
 ←------------------ n/2 ----------------→ ←------------------ n/2 ------------------→

9 39 45 81 18 27 72 90 Level2

Index → 0 1 2 3 4 5 6 7

 ↓ ↓
 ←--- n --→

9 18 27 39 45 72 81 90 Level1

Index → 0 1 2 3 4 5 6 7

Fig.7.7(b): Merging of elements using merge sort to form sorted array

 CH 7: Searching and Sorting 7.56

The summarized levels of merging the elements are shown in Fig.7.7(b), but the detail
steps to merge two sorted sub-arrays are not shown for the ease of understanding.
Now the detail sequences of merging two sub-arrays – (9, 39, 45, 81) and (18, 27, 72,
90) at Level 2 shown in Fig.7.7(b) are given in the following Fig.7.8.

L
ev

el
2

a 9 39 45 81 18 27 72 90

Index → 0 1 2 3 4 5 6 7

↑ ↑
lb i

↑
mid

↑
j

↑
ub

 a[i] < a[j] → b[k] = a[i]

b 9

Index → 0 1 2 3 4 5 6 7

↑
k

 As a[i] < a[j] → i++, k++

a 9 39 45 81 18 27 72 90

Index → 0 1 2 3 4 5 6 7

 ↑
lb

↑
i

↑
mid

↑
j

↑
ub

 a[i] > a[j] → b[k] = a[j]

b 9 18

Index → 0 1 2 3 4 5 6 7

↑
k

 As a[i] > a[j] → j++, k++

a 9 39 45 81 18 27 72 90

Index → 0 1 2 3 4 5 6 7

 ↑
lb

↑
i

↑
mid

↑
j

↑
ub

 a[i] > a[j] → b[k] = a[j]

b 9 18 27

Index → 0 1 2 3 4 5 6 7

↑
k

 As a[i] > a[j] → j++, k++

Fig.7.8: Step by step merging process

 CH 7: Searching and Sorting 7.57

L
ev

el
2

a 9 39 45 81 18 27 72 90

Index → 0 1 2 3 4 5 6 7

 ↑
lb

↑
i

↑
mid

↑
j

↑
ub

 a[i] < a[j] → b[k] = a[i]

b 9 18 27 39

Index → 0 1 2 3 4 5 6 7

↑
k

 As a[i] < a[j] → i++, k++

a 9 39 45 81 18 27 72 90

Index → 0 1 2 3 4 5 6 7

 ↑
lb

↑
i

↑
mid

↑
j

↑
ub

 a[i] < a[j] → b[k] = a[i]

b 9 18 27 39 45

Index → 0 1 2 3 4 5 6 7

↑
k

 As a[i] < a[j] → i++, k++

a 9 39 45 81 18 27 72 90

Index → 0 1 2 3 4 5 6 7

 ↑
lb

↑ ↑
 i mid

↑
j

↑
ub

 a[i] > a[j] → b[k] = a[j]

b 9 18 27 39 45 72

Index → 0 1 2 3 4 5 6 7

↑
k

 As a[i] > a[j] → j++, k++

Fig.7.8: Step by step merging process

 CH 7: Searching and Sorting 7.58

L
ev

el
2

a 9 39 45 81 18 27 72 90

Index → 0 1 2 3 4 5 6 7

 ↑
lb

↑ ↑
 i mid

↑ ↑
j ub

 a[i] < a[j] → b[k] = a[i]

b 9 18 27 39 45 72 81

Index → 0 1 2 3 4 5 6 7

↑
k

 As a[i] < a[j] → i++, k++

a 9 39 45 81 18 27 72 90

Index → 0 1 2 3 4 5 6 7

 ↑
lb

↑
 mid

↑
i

↑ ↑
j ub

 i > mid → b[k] = a[j]

b 9 18 27 39 45 72 81 90

Index → 0 1 2 3 4 5 6 7

↑
k

 As i > mid → j++, k++

Now the original array a will be replaced by the temporary sorted array b to
get the final sorted list.

a 9 18 27 39 45 72 81 90

Index → 0 1 2 3 4 5 6 7

Final sorted array

Fig.7.8: Step by step merging process

Some observations for the merge sort are given below.

• In merge sort the entire list will be sub-divided continuously into two halves i.e. two
sub-lists with half of the elements of its parent list. This implies that the entire array
of n elements will be sub-divided into two sub-arrays of n/2 elements, the sub-
arrays of n/2 elements will be divided into sub-arrays of n/4 elements and so on.
This division procedure will continue until all the sub-arrays hold one element.

• In merge sort all the sub-arrays should be sorted. To fulfill this condition all the sub-
arrays will hold one element finally, because a sub-array with single element can be
surely said sorted.

 CH 7: Searching and Sorting 7.59

• The merging process will start using the sub-arrays with one elements and after
merging at every stage the new resultant array becomes sorted once again. This
process will be continued until the entire array becomes sorted.

Merge sort is a recursive process where the function MergeSort calls itself two times –
one for the left half of the array and other for the right half of the array. Due these two
recursive calls the array of n elements will be divided into one element finally. After
these two recursive calls another function Merge is used to merge the sub-arrays to
result a sorted array of n elements. The algorithm of merge sort is given below.

Algorithm of Merge Sort:
a → Array
lb → Lower bound
ub → Upper bound

MergeSort(a, lb, ub)
Step 1: Start

Step 2: If lb < ub, then
a) Set mid = (lb + ub) / 2;
b) Call MergeSort(a, lb, mid)
c) Call MergeSort(a, mid + 1, ub)
d) Call Merge(a, lb, mid, ub)
[End of If (Step 2)]

Step 3: Stop

Merge(a, lb, mid, ub)
Step 1: Start

Step 2: Set i = lb

Step 3: Set j = mid + 1

Step 4: Set k = lb

Step 5: Repeat Step 6 to Step 7 while i ≤ mid and j ≤ ub

Step 6: If a[i] ≤ a[j], then
a) Set b[k] = a[i]
b) Set i = i + 1
Otherwise
c) Set b[k] = a[j]
d) Set j = j + 1
[End of If-Else (Step 6)]

Step 7: Set k = k + 1
[End of Loop (Step 5)]

 CH 7: Searching and Sorting 7.60

Step 8: If i > mid, then
a) Repeat b) to d) while j ≤ ub
b) Set b[k] = a[j]
c) Set j = j + 1
d) Set k = k + 1
[End of Loop (a)]
Otherwise
e) Repeat f) to h) while i ≤ mid
f) Set b[k] = a[i]
g) Set i = i + 1
h) Set k = k + 1
[End of Loop (e)]
[End of If-Else (Step 8)]

Step 9: Set i = lb

Step 10: Repeat Step 11 to Step 12 while i < k

Step 11: Set a[i] = b[i]

Step 12: Set i = i + 1
[End of Loop (Step 10)]

Step 13: Return

C program to arrange a set of numbers in ascending order using merge sort.

#include<stdio.h>

void MergeSort(int [],int ,int);
void Merge(int [],int ,int ,int);
int main()
{

int a[50], i, length;
printf("Enter the number of elements: ");
scanf("%d", &length);
printf("Enter the elements of the array:\n");
for(i=0; i<length; i++)
{

printf("Enter Element%d: ", i+1);
scanf("%d", &a[i]);

}

MergeSort(a, 0, length-1);

 CH 7: Searching and Sorting 7.61

printf("Sorted List Using Merge Sort: ");

for(i=0; i<length; i++)
printf("%d ", a[i]);

printf("\n");
return 0;

}

void MergeSort(int a[],int lb,int ub)
{

int mid;

if(lb < ub)
{

mid = (lb + ub)/2;
MergeSort(a, lb, mid);
MergeSort(a, mid+1, ub);
Merge(a, lb, mid, ub);

}
}

void Merge(int a[],int lb,int mid,int ub)
{

int i, j, k;
int b[50];

i = lb;
j = mid + 1;
k = lb;

while(i<=mid && j<=ub)
{

if(a[i] <= a[j])
{

b[k] = a[i];
i++;

}
else
{

b[k] = a[j];
j++;

}
k++;

}

 CH 7: Searching and Sorting 7.62

if(i > mid)
{

while(j <= ub)
{

b[k] = a[j];
j++;
k++;

}
}
else
{

while(i <= mid)
{

b[k] = a[i];
i++;
k++;

}
}

for(i=lb; i<k; i++)
a[i] = b[i];

}

Time complexity of merge sort – To calculate the time complexity of merge sort we
have to determine the number of times operation happened to complete the merge sort
in best case and worst case. In case of merge sort the time complexity remains same
for best, worst and average case.

In Fig.7.7 we can observe that it divides the entire array of n elements into sub-arrays
of n/2 elements (approximately) at Level2. Similarly we have n/4 elements for each
sub-array at Level3, n/8 elements for every sub-array at Level4 and so on. Suppose at
kth Level each sub-array will hold one element and this kth level is the last level in the
merge sort.

At Level 1 number of elements in the array = n = n / 20

At Level 2 number of elements in each sub-array = n / 2 = n / 21

At Level 3 number of elements in each sub-array = n / 4 = n / 22

At Level 4 number of elements in each sub-array = n / 8 = n / 23

.·. At kth Level number of elements in each sub-array = n / 2k – 1 = 1

or, 2k – 1 = n

.·. k = log2 n + 1

 CH 7: Searching and Sorting 7.63

Now for every level we can see that there will be some comparisons and transferring
of elements from the original array a to the auxiliary array b to store the elements in
sorted manner. Finally the resultant sorted elements stored in the auxiliary array b are
restored into original array a during the merge operation. Obviously it takes a time
proportional to the number of elements in the entire list (n). As a result the time taken
by each level becomes C n where C is a constant.

Therefore the total time taken due to k number of levels = k C n = C n (log2 n + 1).
The time complexity of merge sort becomes O(n log2 n).

Recurrence Method: The time complexity of merge sort may be determined using
recurrence relation also. To establish the recurrence relation of the merge sort we have
to keep in mind the function of merge sort which is given below for clarification.

void MergeSort(int a[],int lb,int ub) --------- Time take by the QuickSort function for n
number of elements: T(n)

{
int mid;
if(lb < ub)
{

mid = (lb + ub) / 2;
MergeSort(a, lb, mid); ------ Time taken by the function for left

sub-array of n/2 elements: T(n/2)
MergeSort(a, mid+1, ub); --- Time taken by the function for right

sub-array of n/2 elements: T(n/2)
Merge(a, lb, mid, ub); ------ Time taken by the Merge function: C n

Where C is a constant and n is the
} number of elements in the entire array

}

If the time taken by the quick sort for n elements is T(n), the recurrence relation is
given by

 T(n) = T(n/2) + T(n/2) + C n

or, T(n) = 2 T(n/2) + C n

 or, T(n) = 2 [2 T(n/4) + C n/2] + C n [·.· T(n/2) = 2 T(n/4) + C n/2]

or, T(n) = 22 T(n / 22) + 2C n

or, T(n) = 22 [2 T(n/8) + C n/4] + 2n [·.· T(n/4) = 2 T(n/8) + C n/4]

or, T(n) = 23 T(n / 23) + 3C n

or, T(n) = 2k T(n / 2k) + kC n -- (1)
Where k is the number of levels to get one
element in each partition using merge sort

 CH 7: Searching and Sorting 7.64

.·. n / 2k = 1

or, 2k = n

.·. k = log2 n

Now putting k = log2 n into equation (1) we get,

T(n) = n T(1) + C n log2 n

For one element in the list it takes 1 unit of time i.e. T(1) = 1.

.·. T(n) = n . 1 + C n log2 n = n (C log2 n + 1)

The time complexity of merge sort in best / worst / average case is O(n log2 n).

Non-in-place sorting – Merge sort takes an extra auxiliary array to combine two
sorted sub-arrays, which consumes extra memory space proportional to the number of
elements. That’s why it is a non-in-place sorting.

Stability of merge sort – Merge sort does not interchange the positions of duplicates
elements in the original list. This makes the merge sort to be a stable sort.

Advantages of merge sort:
1. Merge has the time complexity in the order of O(n log2 n) for best or average or

worst case which makes it superior than other sorting algorithms like bubble sort,
insertion sort, selection sort etc.

2. It is efficient for large data sets, but can be used for small or medium data set also.
3. It is a stable sort.

Disadvantages of merge sort:
1. The process of merge sort is quite complex and massively recursive in nature.
2. It takes extra space to sort the elements which makes it a non-in-place sorting
 algorithm.

